Abstract

The impingement cooling for a modern gas turbine component, either a combustor liner or a high-pressure turbine blade, is often not as efficient as required due to strong cross-flow effect and coolant maldistribution. This paper reports a novel multi-stage impingement cooling scheme to effectively use the coolant and minimize the cross-flow effect. The design concept and general working mechanism are introduced in this Part I paper. The extra design flexibilities and optimization strategies are reported in Part II. Numerical simulations on conjugate heat transfer (CHT) were carried out to assess the flow structure and thermal performance between a typical single-stage cooling design and a three-stage cooling design at typical operating conditions. It has been observed that the novel multi-stage cooling design can reinitiate impingement jets at each stage, which greatly reduces the cross-flow impact and local thermal gradient. The staging of cooling air for the target surface also offers better utilization of the cooling capacity. Even by using 50% of the coolant designed for the single-stage impingement cooling, the multi-stage case can still sufficiently cool the target surface. The additional pressure loss penalty introduced in multi-stage design needs further efforts on design optimization.

References

References
1.
Liu
,
K.
,
Hubbard
,
P.
,
Sadasivuni
,
S.
, and
Bulat
,
G.
,
2019
, “
Extension of Fuel Flexibility by Combining Intelligent Control Methods for Siemens SGT-400 Dry Low Emission Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011003
. 10.1115/1.4040689
2.
Bailey
,
J. C.
,
Intile
,
J.
,
Fric
,
T. F.
,
Tolpadi
,
A. K.
,
Nirmalan
,
N. V.
, and
Bunker
,
R. S.
,
2002
, “
Experimental and Numerical Study of Heat Transfer in a Gas Turbine Combustor Liner
,”
ASME
Paper No. GT2002-30183
. 10.1115/gt2002-30183
3.
Greenwood
,
S. A.
,
2000
, “
Low Emission Combustion Technology for Stationary Gas Turbine Engines
,”
Proceedings of the 29th Turbomachinery Symposium
,
Texas A&M University
, pp.
125
133
.
4.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
Taylor & Francis Group
,
Boca Raton
, pp.
329
362
.
5.
Husain
,
R. A. A.
, and
Andrews
,
G. E.
,
1990
, “
Full Coverage Impingement Heat Transfer at High Temperature
,”
ASME Paper No. 90-GT-285
.
6.
Xie
,
R.
,
Wang
,
H.
,
Xu
,
B.
, and
Wang
,
W.
,
2018
, “
A Review of Impingement Jet Cooling in Combustor Liner
,”
ASME Paper No. GT2018-76335
.
7.
Miller
,
M.
,
Natsui
,
G.
,
Ricklick
,
M.
,
Kapat
,
J.
, and
Schilp
,
R.
,
2014
, “
Heat Transfer in a Coupled Impingement-Effusion Cooling System
,”
ASME Paper GT2014-26416
.
8.
Huber
,
A. M.
, and
Viskanta
,
R.
,
1994
, “
Effect of Jet-Jet Spacing on Convective Heat Transfer to Confined, Impinging Arrays of Axisymmetric Air Jets
,”
Int. J. Heat Mass Transfer
,
37
(
18
), pp.
2859
2869
. 10.1016/0017-9310(94)90340-9
9.
Andrews
,
G. E.
, and
Hussain
,
C. I.
,
1987
, “
Full Coverage Impingement Heat Transfer: The Influence of Crossflow
,”
AIAA, SAE, ASME, and ASEE, Joint Propulsion Conference
,
San Diego
,
CA, AIAA-87-2010
, pp.
1
9
.
10.
Hollworth
,
B. R.
, and
Dagan
,
L.
,
1980
, “
Arrays of Impinging Jets with Spent Fluid Removal Through Vent Holes on the Target Surface Part 1: Average Heat Transfer
,”
ASME J. Eng. Gas Turbines Power
,
102
(
4
), pp.
994
999
. 10.1115/1.3230372
11.
Andrews
,
G. E.
,
Asere
,
A. A.
,
Hussain
,
C. I.
, and
Mkpadi
,
M. C.
,
1985
, “
Transpiration and Impingement/Effusion Cooling of Gas Turbine Combustion Chambers
,”
Seventh International Symposium on Air Breathing Engines
,
Beijing, China
,
AIAA/ISABE-85-7095
, pp.
794
803
.
12.
Goldstein
,
R. J.
, and
Seol
,
W. S.
,
1991
, “
Heat Transfer to a Row of Impinging Circular Air Jets Including the Effect of Entrainment
,”
Int. J. Heat Mass Transfer
,
34
(
8
), pp.
2133
2147
. 10.1016/0017-9310(91)90223-2
13.
Li
,
W.
,
Li
,
X.
,
Ren
,
J.
,
Jiang
,
H.
, and
Yang
,
L.
,
2016
, “
Effect of Reynolds Number, Hole Patterns, Target Plate Thickness on Cooling of an Impinging Jet Array: Part II—Conjugate Heat Transfer Results and Optimization
,”
ASME
Paper No. GT2016-56768
. 10.1115/gt2016-56768
14.
El-Jummah
,
A. M.
,
Andrews
,
G. E.
, and
Staggs
,
J. E. J.
,
2013
, “
Conjugate Heat Transfer CFD Predictions of Impingement Jet Array Flat Wall Cooling Aerodynamics with Single Sided Flow Exit
,”
ASME Paper No. GT2013-95343
.
15.
El-Jummah
,
A. M.
,
Abdul Hussain
,
R. A.
,
Andrews
,
G. E.
, and
Staggs
,
J. E. J.
,
2014
, “
Conjugate Heat Transfer CFD Predictions of Impingement Heat Transfer: Influence of the Number of Holes for a Constant Pitch-to-Diameter Ratio X/D
,”
ASME
Paper No. GT2014-25268
. 10.1115/gt2014-25268
16.
El-Jummah
,
A. M.
,
Nazari
,
A.
,
Andrews
,
G. E.
, and
Staggs
,
J. E. J.
,
2017
, “
Impingement/Effusion Cooling Wall Heat Transfer: Reduced Number of Impingement Jet Holes Relative to the Effusion Holes
,”
ASME
Paper No. GT2017-63494
. 10.1115/gt2017-63494
17.
El-Jummah
,
A. M.
,
Andrews
,
G. E.
, and
Staggs
,
J. E. J.
,
2018
, “
Enhancement of Impingement Heat Transfer with the Crossflow Normal to Ribs and Pins Between Each Row of Holes
,”
ASME
Paper No. GT2018-76969
. 10.1115/gt2018-76969
18.
Rekingen
,
J. H.
,
Othmarsingen
,
A. K.
,
Mandach
,
T. S.
, and
Seon
,
R. T.
,
1995
, “
Apparatus for Impingement Cooling
,”
US Patent No. 5467815
.
19.
Hebert
,
R.
,
Ekkad
,
S. V.
,
Khanna
,
V.
,
Abreu
,
M.
, and
Moon
,
H. K.
,
2004
, “
Heat Transfer Study of a Novel Low-Crossflow Design for Jet Impingement
,”
ASME International Mechanical Engineering Congress and Exposition
,
Paper No. IMECE2004-60468
, pp.
583
–5
88
.
20.
Liu
,
K.
,
2017
, “
A Combustor Assembly with Impingement Plates for Redirecting Cooling Air Flow in Gas Turbine Engines
,”
WO Patent No. 2017190967A1
.
21.
Zuckerman
,
N.
, and
Lior
,
N.
,
2005
, “
Impingement Heat Transfer: Correlations and Numerical Modelling
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
544
552
. 10.1115/1.1861921
22.
Florschuetz
,
L. W.
,
Metzger
,
D. E.
, and
Truman
,
C. R.
,
1981
, “
Jet Array Impingement with Crossflow-Correlation of Streamwise Resolved Flow and Heat Transfer Distributions
,”
NASA Contractor Report 3373
.
23.
Metzger
,
D. E.
, and
Korstad
,
R. J.
,
1972
, “
Effects of Crossflow on Impingement Heat Transfer
,”
ASME J. Eng. Gas Turbines Power
,
94
(
1
), pp.
35
41
. 10.1115/1.3445616
24.
Bailey
,
J. C.
, and
Bunker
,
R. S.
,
2002
, “
Local Heat Transfer and Flow Distribution for Impinging Jet Arrays of Dense and Sparse Extent
,”
ASME
Paper No. GT2002-30473
. 10.1115/gt2002-30473
You do not currently have access to this content.