Abstract

A magnetohydrodynamic (MHD) generator is a device that generates electrical energy through the interaction between a conductive fluid and a magnetic field. This method of direct energy conversion allows the use of a renewable energy source such as solar energy and represents an alternative to tackle the greenhouse effect. This paper presents the development of an MHD solar generator, which is constituted by a solar thermal system and an MHD cell. The solar thermal system consists of a set of tubes with copper fins, connected in parallel and placed inside of a 1 m2 panel. In which, an electrolytic mixture of H2O and NaCl at 20% vol. was introduced as a working fluid. In order to increase the kinetic energy of the fluid, the panel was exposed to solar radiation, where it reached temperatures above 373 K and pressures above 96 kPa. This solar thermal system operates in closed cycle conditions by including a check valve in its inlet–outlet junction; in this way, the fluid travels through the MHD generator. The MHD cell was composed of a block of polytetrafluoroethylene, two cylindrical stainless-steel electrodes, and four neodymium magnets. For simulation purposes, comsol multiphysics was used to reproduce the current density produced by the MHD solar generator. Pressure and temperature quantities obtained experimentally in the MHD cell were employed as boundary conditions. The experimental maximal current density obtained corresponds to 4.30 mA/m2, and the comparison between theoretical and experimental results shows that the model fits fairly well.

References

References
1.
Tanaka
,
M.
, and
Okuno
,
Y.
,
2017
, “
Performance of a Seed-Free Disk Magnetohydrodynamic Generator With Self-Excited Joule Heating in the Nozzle
,”
Inst. Electr. Electron. Eng. Trans. Plasma Sci.
,
45
(
3
), pp.
454
460
. 10.1109/tps.2017.2654514
2.
Chaturvedi
,
R.
,
Shrivatav
,
R. K.
, and
Ahamad
,
M. S.
,
2014
, “
The Numerical Analysis of Magnetohydrodynamic Flow of Dusty Visco-Elastic First Order Oldroyd Fluid When Passing Through a Porous Rectangular Channel
,”
Int. J. Mod. Math. Sci.
,
1
(
9
), pp.
946
957
.
3.
Bedick
,
C. R.
,
Woodside
,
C. R.
,
Baylor
,
R.
, and
Paul-Irudayaraj
,
M.
,
2020
, “
Combustion Plasma Electrical Conductivity Model Validation for Oxy-Fuel Magnetohydrodynamic Applications: Spectroscopic and Electrostatic Probe Studies
,”
Combust. Flame
,
213
, pp.
140
155
. 10.1016/j.combustflame.2019.11.003
4.
Vásquez
,
A. L.
,
2015
,
Development and Prospects of Renewable Energy in Mexico
,
Informal Economy Magazine
,
Mexico
, (
390
),
132
153
. (
Spanish
)
5.
Dwivedi
,
Y. D.
,
Rao
,
C. H. K.
, and
Jagadish
,
D.
,
2014
, “
Environment Friendly Magneto Hydro Dynamic Generator—A Sequel
,”
International Journal of Renewable Energy and Environmental Engineering
,
2
(
4
), pp.
271
279
.
6.
Li
,
L.
,
Huang
,
H. L.
, and
Zhu
,
G. P.
,
2018
, “
Numerical Simulations for a Partial Disk Magnetohydrodynamic Generator Performance
,”
Energies
,
11
(
1
), p.
127
. 10.3390/en11010127
7.
Dhareppagol
,
V. D.
, and
Saurav
,
A.
,
2013
, “
The Future Power Generation with Magnetohydrodynamic Generation
,”
Int. J. Adv. Electr. Electron. Eng.
,
2
(
9
), pp.
2278
8948
.
8.
Parsodkar
,
R. R.
,
2015
, “
Magnetohydrodynamic Generator
,”
J. Adv. Res. Electr. Electron. Eng.
,
2
(
3
), pp.
1
7
.
9.
Morozov
,
A. I.
,
2013
,
Introduction to Plasma Dynamics
, 2nd ed.,
CRC Press
,
USA
.
Ch.2. ISBN:978-1-4398-8133-0
10.
Krishna
,
M. V.
,
Ahamad
,
N. A.
, and
Chamkha
,
A. J.
,
2020
, “
Hall and Ion Slip Effects on Unsteady Magnetohydrodynamic Free Convective Rotating Flow Through a Saturated Porous Medium Over an Exponential Accelerated Plate
,”
Alexandria Eng. J.
,
59
(
2
), pp.
565
577
. 10.1016/j.aej.2020.01.043
11.
Inan
,
U.
, and
Golkowski
,
M.
,
2011
,
Principles of Plasma Physics for Engineers and Scientists
, 1st ed.,
Cambridge University Press
,
UK
.
Chs. 3–6. ISBN: 978-0-521-19372-6
12.
Ibañes
,
G.
,
Cuevas
,
S.
, and
López de Haro
,
M.
,
2002
, “
Optimization Analysis of an Alternate Magnetohydrodynamic Generator
,”
Energy Convers. Manage.
,
43
(
14
), pp.
1757
1771
. 10.1016/S0196-8904(01)00133-9
13.
Chui
,
T. F. M.
, and
Freyberg
,
D. L.
,
2009
, “
Implementing Hydrologic Boundary Conditions in a Multiphysics Model
,”
J. Hydrol. Eng.
,
14
(
12
), pp.
1374
1377
. 10.1061/(ASCE)HE.1943-5584.0000113
14.
Benemérita Universidad Autónoma de Puebla
,
2013
,
Solar stove with non-reflective collectors
.
Puebla, México
.
(Puebla, México). Mx/E/2013/011114 (Patent pending)
.
15.
Amiry
,
H.
,
Benhmida
,
M.
,
Bendaoud
,
R.
,
Hajjaj
,
C.
, and
Bounouar
,
S.
,
2018
, “
Design and Implementation of a Photovoltaic IV Curve Tracer: Solar Modules Characterization Under Real Operating Conditions
,”
Energy Convers. Manage.
,
169
(
1
), pp.
206
216
. 10.1016/j.enconman.2018.05.046
16.
Ali
,
U.
,
Rehman
,
K. U.
, and
Malik
,
M. Y.
,
2019
, “
The Influence of Magnetohydrodynamic and Heat Generation/Absorption in a Newtonian Flow Field Manifested With a Cattaneo–Christov Heat Flux Model
,”
Phys. Scr.
,
94
(
8
), p.
085217
. 10.1088/1402-4896/ab11ff
17.
Li
,
D.
,
Zeng
,
D.
,
Yin
,
X.
,
Han
,
H.
,
Guo
,
L.
, and
Yao
,
Y.
,
2016
, “
Phase Diagrams and Thermochemical Modeling of Salt Lake Brine Systems. II. NaCl+ H2O, KCl+ H2O, MgCl2+ H2O and CaCl2+ H2O Systems
,”
CALPHAD: Comput. Coupling Phase Diagrams Thermochem.
,
53
(
4
), pp.
78
89
. 10.1016/j.calphad.2016.03.007
18.
Ibáñez
,
G.
,
Cuevas
,
S.
, and
de Haro
,
M. L.
,
2006
, “
Optimization of a Magnetohydrodynamic Flow Based on the Entropy Generation Minimization Method
,”
Int. Commun. Heat Mass Transfer
,
33
(
3
), pp.
295
301
. 10.1016/j.icheatmasstransfer.2005.12.003
19.
Krishna
,
M. V.
, and
Chamkha
,
A. J.
,
2019
, “
Hall Effects on Magnetohydrodynamic Squeezing Flow of a Water-Based Nanofluid Between two Parallel Disks
,”
J. Porous Media
,
22
(
2
), pp.
209
223
. 10.1615/JPorMedia.2018028721
20.
Pérez-Luna
,
J. G.
,
Cid-Rodríguez
,
E.
,
Jiménez-Xochimitl
,
S.
, and
BUAP
,
2014
,
Variable Frequency Curve Tracer Module
.
Mx/E/2014/060274 (Patent pending)
.
21.
Takeda
,
M.
,
Tomomori
,
N.
,
Akazawa
,
T.
,
Nishigaki
,
K.
, and
Iwata
,
A.
,
2004
, “
Flow Control of Seawater with a Diverging Duct by Magnetohydrodynamic Separation Method
,”
Inst. Electr. Electron. Eng. Trans. Appl. Supercond.
,
14
(
2
), pp.
1543
1546
. 10.1109/tasc.2004.830697
You do not currently have access to this content.