Full Content is available to subscribers

Subscribe/Learn More  >

Three-Dimensional Multiple-Relaxation-Time Lattice Boltzmann Simulation of Vapor Condensation on Subcooled Wall

[+] Author Affiliations
Wandong Zhao, Ying Zhang

Nanchang University, Nanchang, China

Ben Xu

University of Texas Rio Grande Valley, Edinburg, TX

Paper No. IMECE2018-88490, pp. V08AT10A059; 11 pages
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 8A: Heat Transfer and Thermal Engineering
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5211-8
  • Copyright © 2018 by ASME


Oscillating flows and multiphase heat transfer processes frequently occur in many engineering and scientific applications and systems, as is the case in enhanced geothermal energy, CO2 sequestration and storage, and in evaporation in soil, to name a few. Nevertheless, modeling of such flows is a rather challenging task due to the complex interfacial dynamics among different phases and solid porous structures. Over the decades, several types of Lattice Boltzmann (LB) models for multiphase flows have been developed under different physical pictures, for example the color-gradient model, Single-Relaxation-Time (SRT) pseudopotential model, and the HSD model. In this study, a pseudopotential Multiple-Relaxation-Time (MRT) LBM simulation will be utilized to simulate incompressible oscillating flow and condensation in 2D porous media. Initially, the model will be used to optimize the porous structure in order to have the maximum condensation rate of water vapor. Subsequently, the effects of contacting angle, wettability, oscillating frequency and phase angle to the heat flux, the temperature field of porous media, and the condensation rate will be discussed. Moreover, a multiscale approach will be considered in order to couple the heat transfer in macroscale applications. It is expected that such an approach will provide a different perspective regarding the engineering applications involved with oscillating flow and multiphase heat transfer processes.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In