0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Nozzle-to-Target Spacing on Fin Effectiveness and Convective Heat Transfer Coefficient for Array Jet Impingement Onto Novel Micro-Roughness Structures

[+] Author Affiliations
Prashant Singh, Shoaib Ahmed, Srinath V. Ekkad

North Carolina State University, Raleigh, NC

Mingyang Zhang

Virginia Tech, Blacksburg, VA

Paper No. IMECE2018-86501, pp. V08AT10A038; 8 pages
doi:10.1115/IMECE2018-86501
From:
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 8A: Heat Transfer and Thermal Engineering
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5211-8
  • Copyright © 2018 by ASME

abstract

With recent advancements in the field of additive manufacturing, the design domain for development of complicated cooling configurations has significantly expanded. The motivation of the present study is to develop high-performance impingement cooling designs catered towards application’s requiring high rates of heat removal, e.g. gas turbine blade leading edge and double-wall cooling, air-cooled electronic devices etc. Jet impingement is a popular cooling technique which results in high convective heat rates. In the present study, jet impingement is combined with strategic roughening of the target surface, such that a combined effect of impingement-based and curved-surface area based enhancement in heat transfer coefficient could be achieved. Traditionally, for surface roughening, cylindrical and cubic elements are used. We have demonstrated, through our steady-state experiments, a novel “concentric” shaped roughness element design which has resulted in about 20–60% higher effectiveness compared to smooth target jet impingement, for jet-to-target spacing of one jet diameter. The cubic shaped roughened target yielded about 20% to 40% enhancement in effectiveness, and the cylindrical shaped roughened target yielded 10% to 30% enhancement. Through the plenum pressure measurements, it was found that the addition of the micro-roughness elements does not result in a discernable increment in pressure losses, compared to the standard impingement on the smooth target surface. Hence, the demonstrated configuration with the highest heat transfer coefficient also resulted in the highest thermal hydraulic performance.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In