0

Full Content is available to subscribers

Subscribe/Learn More  >

Optimize Additive Manufacturing Post-Build Heat Treatment and Hot Iso-Static Pressing Process Using an Integrated Computational Materials Engineering Framework

[+] Author Affiliations
Anahita Imanian, Kelvin Leung, Nagaraja Iyyer

Technical Data Analysis Inc., Falls Church, VA

Peipei Li, Derek H. Warner

Cornell University, Ithaca, NY

Paper No. IMECE2018-88550, pp. V002T02A064; 6 pages
doi:10.1115/IMECE2018-88550
From:
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 2: Advanced Manufacturing
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5201-9
  • Copyright © 2018 by ASME

abstract

Additive manufacturing (AM) technology is becoming more popular for the fabrication of 3D metal products as it offers rapid prototyping and large design freedom. However, part quality and fatigue performance of components fabricated by current AM technology are not comparable to that produced by traditional methods. Post-build processing techniques, such as heat treatment (HT) and Hot Iso-static Pressing (HIP), have been developed to improve microstructure and remove internal flaws that are detrimental to fatigue resistance. In order to simulate the HT and HIP process and optimize the post-build process, an integrated computational materials engineering (ICME) approach is utilized to link the process parameters with material’s structures, properties, and fatigue performance. The purpose of this study is two-fold. First, we simulate the HT/HIP process including the physics of heat transfer, and porosity evolution. Second, a state-of-the-art hybrid optimization approach, combining response surface method and genetic algorithm is utilized to optimize the post-build process parameters in order to minimize porosities.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In