0

Full Content is available to subscribers

Subscribe/Learn More  >

Comparison of Louvered Plate-Fin Heat Exchangers Made via Additive Manufacturing

[+] Author Affiliations
Michael Bichnevicius, David Saltzman, Stephen Lynch

Pennsylvania State University, University Park, PA

Paper No. IMECE2018-87941, pp. V002T02A061; 11 pages
doi:10.1115/IMECE2018-87941
From:
  • ASME 2018 International Mechanical Engineering Congress and Exposition
  • Volume 2: Advanced Manufacturing
  • Pittsburgh, Pennsylvania, USA, November 9–15, 2018
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5201-9
  • Copyright © 2018 by ASME

abstract

Additive manufacturing (AM) can enable complex and novel designs that are otherwise infeasible with traditional metal manufacturing techniques. In low-volume production scenarios, particularly for specialized applications which can benefit from customized designs, traditional metal manufacturing techniques may be limited by costs associated with tooling. The ability to produce novel designs is particularly interesting in heat exchanger (HX) design where performance is often largely based on the achievable geometry. However, consequences of the AM process such as surface roughness, deviation from specified dimensions, and defects such as cracks and voids could also affect HX performance. These effects may vary between identically designed AM parts based on AM machine settings. The goal of this work is to gain a better understanding of the performance variations across several different implementations of the same heat exchanger design. More specifically, the objective of this work is to experimentally compare the thermal and hydraulic performances of a traditionally manufactured, stamped-aluminum aircraft oil cooler and three geometrically equivalent, additively manufactured counterparts. Compared to the traditionally manufactured heat exchanger, the AM HXs exhibited significantly higher air-side pressure loss and higher heat transfer despite having nominally similar geometries. Between AM HXs, there were slight differences in surface roughness characteristics based on optimal profilometry measurements. In addition, the thickness of the air-side fins varied as much as 15 percent between the AM HXs. The net effect, without the contribution of each cause clear, was higher air-side pressure loss and slightly higher heat transfer for the AM HX with thicker fins. This study indicates that functional heat exchangers built using AM vary in performance even when the same digital model is used to print them, and that AM HXs as a group perform considerably differently than their traditional counterparts. Thus, there is a need to account for anticipated surface roughness, geometric deviations, and potential defects when designing HXs. Proper consideration could result in improved thermal performance for future heat exchangers.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In