Full Content is available to subscribers

Subscribe/Learn More  >

Prediction of Mechanical Properties of ERW Pipes Considering Manufacturing Process Through Numerical Analysis

[+] Author Affiliations
Seong-Wook Han, Ho-Kyung Kim

Seoul National University, Seoul, South Korea

Soo-Chang Kang

POSCO, Incheon, South Korea

Jiwoon Yi

Korean Institute of Bridge and Structural Engineers, Seoul, South Korea

Paper No. IPC2018-78491, pp. V003T05A025; 6 pages
  • 2018 12th International Pipeline Conference
  • Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining
  • Calgary, Alberta, Canada, September 24–28, 2018
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5188-3
  • Copyright © 2018 by ASME


Along with the development of the energy industry, demand for oil and gas pipelines has increased, and as the low oil price era has been prolonged, more economical pipe design and construction are required. Especially, ERW pipe has been expanding its range of applications, which is advantageous in terms of productivity and price. ERW pipes are made by passing through continuous rollers, where unintentional plastic deformation such as the Bauschinger effect occurs. Since plastic deformation caused by repetitive loading and unloading changes the initial properties of steel, it is necessary to precisely predict the final properties of the pipe as well as an accurate understanding of the manufacturing process. So, this study focused on evaluating the effects of manufacturing process considering plastic deformation for high performance ERW pipe manufacturing.

In this paper, three manufacturing process stages of ERW pipe were simulated as 3D nonlinear finite element models using ABAQUS: forming stage, sizing stage, and flattening stage. And the ABAQUS model was verified by comparison with the outer diameter measured from full-scale size pipes. In order to maintain the continuity of analysis between each manufacturing process stage, PEEQ, Alpha and residual stress were obtained from each manufacturing process stage, and then these mechanical properties were mapped to the next manufacturing process stage. And change of mechanical properties during the each manufacturing process stage were examined. Finally, the change of material properties at the flattening stage where reverse bending occurs was evaluated, especially in influence of sizing ratio on the flattening stage. Through the developed analytical model, numerical prediction of the mechanical properties of ERW pipe is possible.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In