Full Content is available to subscribers

Subscribe/Learn More  >

Simulation of a Full-Scale CO2 Fracture Propagation Test

[+] Author Affiliations
Gaute Gruben, Stephane Dumoulin, Håkon Nordhagen

SINTEF Industry, Trondheim, Norway

Morten Hammer, Svend T. Munkejord

SINTEF Energy Research, Trondheim, Norway

Paper No. IPC2018-78631, pp. V003T05A011; 10 pages
  • 2018 12th International Pipeline Conference
  • Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining
  • Calgary, Alberta, Canada, September 24–28, 2018
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5188-3
  • Copyright © 2018 by ASME


In this study, we present results from a numerical model of a full-scale fracture propagation test where the pipe sections are filled with impure, dense liquid-phase carbon dioxide. All the pipe sections had a 24″ outer diameter and a diameter/thickness ratio of ∼32. A near symmetric telescopic set-up with increasing toughness in the West and East directions was applied.

Due to the near symmetric conditions in both set-up and results, only the East direction is modelled in the numerical study. The numerical model is built in the framework of the commercial finite element (FE) software LS-DYNA. The fluid dynamics is solved using an in-house computational fluid dynamics (CFD) solver which is coupled with the FE solver through a user-defined loading subroutine. As part of the coupling scheme, the FE model sends the crack opening profile to the CFD solver which returns the pressure from the fluid. The pipeline is discretized by shell elements, while the backfill is represented by the smoothed-particle hydrodynamics (SPH) method. The steel pipe is described by the J2 constitutive model and an energy-based fracture criterion, while the Mohr-Coulomb material model is applied for the backfill material. The CFD solver applies a one-dimensional homogeneous equilibrium model where the thermodynamic properties of the CO2 are represented by the Peng-Robinson equation-of-state (EOS).

The results from the simulations in terms of crack velocity and pressure agree well with the experimental data for the low and medium toughness pipe sections, while a conservative prediction is given for the high-toughness section. Further work for strengthening the reliability of the model to predict the arrest vs. no-arrest boundary of a running ductile fracture is addressed.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In