Full Content is available to subscribers

Subscribe/Learn More  >

Fast Ductile Fracture: Dependence of Propagation Resistance on Crack Velocity

[+] Author Affiliations
Chris Bassindale, Xin Wang

Carleton University, Ottawa, ON, Canada

William R. Tyson

CanmetMATERIALS, Ottawa, ON, Canada

Su Xu

CanmetMATERIALS, Hamilton, ON, Canada

Paper No. IPC2018-78109, pp. V003T05A003; 9 pages
  • 2018 12th International Pipeline Conference
  • Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining
  • Calgary, Alberta, Canada, September 24–28, 2018
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5188-3
  • Copyright © 2018 by ASME and The Crown in right of Canada


In this paper, the effect of inertia on the steady-state velocity of a propagating crack in a modern high toughness pipeline steel was investigated. The line pipe steel examined in this work was an American Petroleum Institute (API) Standard X70 steel. A tensile plate model, simplified from the geometry of a pipe, was studied using the finite element code ABAQUS 6.14-2. The cohesive zone model (CZM) was used to simulate crack propagation. The CZM parameters were calibrated based on matching the crack tip opening angle (CTOA) measured from a drop-weight tear test (DWTT) finite element model to the experimental CTOA of the material. The CZM parameters were then applied to the tensile plate model. The effect of inertia on the steady-state crack velocity was systematically assessed by altering the density of the material used with the plate model. To isolate the influence of inertia, the effect of strain rate on the fracture process and material plasticity was neglected. The results of this study demonstrate that the steady-state crack velocity was affected by the density of the material. The steady-state crack velocity was reduced with increasing mass density, as demonstrated by the effect of backfill. Furthermore, it was shown that the CTOA extracted from the CZ model was not affected by the density of the model.

Copyright © 2018 by ASME and The Crown in right of Canada



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In