Full Content is available to subscribers

Subscribe/Learn More  >

Creep Fatigue Damage Assessment of V-Butt Weld Pipe With an Extended Direct Steady Cycle Analysis

[+] Author Affiliations
Manu Puliyaneth, Haofeng Chen

University of Strathclyde, Glasgow, UK

Weiling Luan

East China University of Science and Technology, Shanghai, China

Paper No. PVP2018-84568, pp. V005T10A013; 9 pages
  • ASME 2018 Pressure Vessels and Piping Conference
  • Volume 5: High-Pressure Technology; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD); Rudy Scavuzzo Student Paper Symposium and 26th Annual Student Paper Competition
  • Prague, Czech Republic, July 15–20, 2018
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5166-1
  • Copyright © 2018 by ASME


One of the methods to increase the efficiency of power plants is by increasing their operating temperature, this can lead to various damage mechanisms due to creep-cyclic plasticity interactions such as creep ratcheting, cyclically enhanced creep and creep enhanced plasticity. In the presence of welds, their assessments are complicated due to the presence of different material zones, namely parent metal, weld metal and heat affected zone which exhibit different properties. This paper aims at investigating the creep-fatigue damage of a V-butt welded pipe under a constant mechanical load and a cyclic temperature load, considering full interaction between creep and cyclic plasticity using the extended Direct Steady Cycle Analysis (eDSCA) within the Linear Matching Method Framework (LMMF). The impact of applied load level and creep dwell on the failure mechanism and location is investigated. Influence of hoop to axial stress ratio and groove angle is studied comprehensively by choosing ranges covering majority of common pipe configurations. Further validation of results is carried out by using detailed step-by-step inelastic analyses in ABAQUS, thereby demonstrating the accuracy and efficiency of LMM eDSCA in predicating the remaining life of multi-material components such as a welded pipe, combining with appropriate creep and fatigue damage models.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In