0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Flaw Shape (Idealization) on the Interaction of Co-Planar Surface Flaws

[+] Author Affiliations
Kaveh Samadian, Stijn Hertelé, Wim De Waele

Ghent University, Ghent, Belgium

Paper No. PVP2018-84506, pp. V005T10A011; 10 pages
doi:10.1115/PVP2018-84506
From:
  • ASME 2018 Pressure Vessels and Piping Conference
  • Volume 5: High-Pressure Technology; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD); Rudy Scavuzzo Student Paper Symposium and 26th Annual Student Paper Competition
  • Prague, Czech Republic, July 15–20, 2018
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5166-1
  • Copyright © 2018 by ASME

abstract

Engineering Critical Assessment (ECA) guidelines contain amongst others, rules to assess flaw interaction. Major flaw dimensions (depth or height and length) are typically characterized assuming the flaws to be contained entirely within a bounding rectangle through a procedure known as flaw idealization. In (computational) fracture mechanics based calculations, flaws are often assumed to be (semi-)elliptical. This paper investigates the interaction between identical co-planar surface breaking flaws. Two flaw shapes are considered and compared: “canoe-shaped” (quarter-circular ends and constant depth elsewhere) and semi-elliptical. Especially for long shallow flaws, the canoe-shaped approximates the bounding rectangle, whereas the semi-elliptical shape only touches the bounding rectangle at three points (deepest point and two points at the surface). Several flaw dimensions and spacing distances are studied through an extensive parametric study comprising elastic and elastic-plastic finite element simulations. The results, based on Stress Intensity Factor (SIF) and J-integral analysis, show how the flaw shape can affect the degree of interaction. Notably, the inconsistency is less in linear-elastic analysis, but becomes more pronounced at higher (elastic-plastic) loading levels. This work highlights a challenge of comparing analytical and numerical based evaluations of interaction with ECA guidelines.

Copyright © 2018 by ASME
Topics: Shapes

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In