0

Full Content is available to subscribers

Subscribe/Learn More  >

Weld Rod Fatigue Analysis Using Effective Notch Stress Method

[+] Author Affiliations
Kumarswamy Karpanan, Allison Weber Kirk, Gerald Hershman

TechnipFMC, Houston, TX

Paper No. PVP2018-84122, pp. V005T05A007; 12 pages
doi:10.1115/PVP2018-84122
From:
  • ASME 2018 Pressure Vessels and Piping Conference
  • Volume 5: High-Pressure Technology; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD); Rudy Scavuzzo Student Paper Symposium and 26th Annual Student Paper Competition
  • Prague, Czech Republic, July 15–20, 2018
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5166-1
  • Copyright © 2018 by ASME

abstract

Welds are one of the commonly used joint types and are employed extensively in subsea oil and gas production equipment. Commonly used weld joints in subsea components are fillet, butt, full-penetration, plug, and girth. Fatigue is one of the critical failure modes for welded joints. Welded joints are complex to analyze for fatigue loading due to the microstructure change during the welding process. The welding process also induces residual stress in the heat affected zone (HAZ) surrounding the weld. This, in turn, can adversely affects the fatigue life of the joint.

The S-N fatigue approach is commonly used for weld fatigue analysis due to the simplicity of this method. Industry standards such as DNV, IIW, BS-7608, and ASME BPVC Sec VIII Div. -2 or -3 are typical references for this type of analysis. For subsea specific applications, DNV-RP-C203 and BS-7608 are generally used because these two standards provide S-N curves for welds in “air” as well as in “seawater with cathodic protection”. These two codes also provide S-N curves for various weld geometries ranging from simple fillet welds to complex tubular joints. Some of the weld fatigue analysis techniques used in the subsea industry are the: nominal stress approach, structural hot spot stress approach, effective notch stress approach (ENS), structural stress method (ASME VIII-2, -3) and the Fracture mechanics based fatigue crack propagation (FCG) approach.

This paper presents the fatigue analysis of fillet welds in bore inserts using the ENS method. In the ENS method, a 1mm radius notch is modelled at the weld root or toe, see Figure 1, which yields a finite weld root stress. The stress analysis is carried out using FEA and the stresses on the notch along with the appropriate fatigue curve are used to estimate the weld root fatigue life.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In