0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental and Simulation Study of Ultrasonic Additive Manufacturing of CFRP/Ti Stacks

[+] Author Affiliations
Sagil James, Abhishek Sonate, Christopher Dang, Lenny De La Luz

California State University Fullerton, Fullerton, CA

Paper No. MSEC2018-6647, pp. V004T03A044; 5 pages
doi:10.1115/MSEC2018-6647
From:
  • ASME 2018 13th International Manufacturing Science and Engineering Conference
  • Volume 4: Processes
  • College Station, Texas, USA, June 18–22, 2018
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5138-8
  • Copyright © 2018 by ASME

abstract

Carbon fiber reinforced plastic (CFRP) are advanced engineering materials which are recognized as the most sought-after composite for several industrial applications including aerospace and automotive sectors. CFRP have superior physical and mechanical properties such as lightweight, high resilience, high-durability and high strength-to-weight ratio. CFRP composites stacked up with titanium to form multi-layered material stacks to enhance its load bearing capability. Traditional methods of stacking up CFRP and titanium involves using either high strength adhesives or rivets and bolts. The laminate structures joined by these methods often tend to fail during high load-bearing applications. Conventional metal welding technologies use high heat causing high thermal stresses and microstructural damages. Ultrasonic welding is a solid-state joining process, which has the capability of welding dissimilar materials at relatively low temperatures using ultrasonic vibration. Ultrasonic additive manufacturing (UAM) process is an ideal method to weld CFRP and Titanium. During the ultrasonic welding process, two dissimilar materials under a continuous static load are subjected to transverse ultrasonic vibrations, which results in high stress and friction between the two surfaces. This research focuses on the study of ultrasonically welding CFRP and Titanium stacks using UAM process. The study involves experimentation performed on an in-house built UAM setup. Finite element analysis is performed to understand the distribution stresses and strains during the UAM process. In this study, CFRP and Titanium layers are successfully welded using UAM process without causing any melting or significant heating. The finite element analysis study revealed that during UAM process, CFRP/Titanium stacks are subject to repeated cyclic shear stress reversals resulting in a strong weld joint. The stress-strain diagram during the process showed a considerable increase in plastic strain during the UAM process. The outcomes of this study can be used to further the industrial applications of the ultrasonic additive process as well as other ultrasonic welding based processes involving dissimilar materials.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In