Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of the Down-Scaling Effects on the Low Swirl Burner and its Application to Microturbines

[+] Author Affiliations
Alex Frank, Jyh-Yuan Chen

University of California, Berkeley, Berkeley, CA

Peter Therkelsen, Miguel Sierra Aznar, Vi H. Rapp, Robert K. Cheng

Lawrence Berkeley National Laboratory, Berkeley, CA

Paper No. GT2018-77208, pp. V04BT04A062; 10 pages
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 4B: Combustion, Fuels, and Emissions
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5106-7
  • Copyright © 2018 by ASME


About 75% of the electric power generated by centralized power plants feeds the energy needs from the residential and commercial sectors. These power plants waste about 67% of primary energy as heat emitting 2 billion tons of CO2 per year in the process (∼ 38% of total US CO2 generated per year) [1]. A study conducted by the United States Department of Energy indicated that developing small-scale combined heat and power systems to serve the commercial and residential sectors could have a significant impact on both energy savings and CO2 emissions. However, systems of this scale historically suffer from low efficiencies for a variety of reasons. From a combustion perspective, at these small scales, few systems can achieve the balance between low emissions and high efficiencies due in part to the increasing sensitivity of the system to hydrodynamic and heat transfer effects. Addressing the hydrodynamic impact, the effects of downscaling on the flowfield evolution were studied on the low swirl burner (LSB) to understand if it could be adapted to systems at smaller scales. Utilizing particle image velocimetry (PIV), three different swirlers were studied ranging from 12 mm to 25.4 mm representing an output range of less than 1 kW to over 23 kW. Results have shown that the small-scale burners tested exhibited similar flowfield characteristics to their larger-scale counterparts in the non-reacting cases studied. Utilizing this data, as a proof of concept, a 14 mm diameter LSB with an output of 3.33 kW was developed for use in microturbine operating on a recuperated Brayton cycle. Emissions results from this burner proved the feasibility of the system at sufficiently lean mixtures. Furthermore, integration of the newly developed LSB into a can style combustor for a microturbine application was successfully completed and comfortably meet the stringent emissions targets. While the analysis of the non-reacting cases was successful, the reacting cases were less conclusive and further investigation is required to gain an understanding of the flowfield evolution which is the subject of future work.

Copyright © 2018 by ASME
Topics: Microturbines



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In