Full Content is available to subscribers

Subscribe/Learn More  >

Sensitivity of Reduced Kinetic Models: The CFD Simulation of SCO2 Oxy-Combustion

[+] Author Affiliations
Zefang Liu, Xiang Gao, Miad Karimi, Bradley Ochs, Vishal Acharya, Wenting Sun

Georgia Institute of Technology, Atlanta, GA

Jacob Delimont, Nathan Andrews

Southwest Research Institute, San Antonio, TX

Paper No. GT2018-76855, pp. V04BT04A040; 10 pages
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 4B: Combustion, Fuels, and Emissions
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5106-7
  • Copyright © 2018 by ASME


Current research on supercritical carbon dioxide (SCO2) oxy-combustion is lacking studies on the performance of kinetic models. An optimized 13 species kinetic model is proposed in the present work for CH4/O2/CO2 oxy-combustion. This 13 species kinetic model is developed based on the detailed USC Mech II mechanism with the Global Pathway Selection algorithm, and then optimized with a genetic algorithm covering conditions of pressure from 150 atm to 300 atm, temperature from 900 K to 1800 K and equivalence ratio from 0.7 to 1.3. The autoignition of 13 species kinetic model presents less than 12% error relative to that of the USC Mech II. The performance of the proposed kinetic model is evaluated using a generic jet in crossflow combustor. Simulations at identical conditions are conducted in ANSYS Fluent for both the 13 species model and a global 5 species model. Results were then compared to evaluate the sensitivity of these two kinetic models to the CFD simulations. The results show a better mixing between the fuel and the oxygen, a longer autoignition delay and a more reasonable temperature distribution using the 13 species kinetic model. It is indicating the importance of choice on kinetic models in numerical simulation.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In