Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Non-Axisymmetric Confinement on the Hydrodynamic Stability of Multi-Nozzle Swirl Flows

[+] Author Affiliations
Harish G. Subramanian, Kiran Manoharan, Santosh Hemchandra

Indian Institute of Science, Bangalore, India

Paper No. GT2018-76368, pp. V04BT04A019; 14 pages
  • ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
  • Volume 4B: Combustion, Fuels, and Emissions
  • Oslo, Norway, June 11–15, 2018
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5106-7
  • Copyright © 2018 by ASME


Interaction between coherent flow oscillations and the pre-mixed flame sheet in combustors can result in coherent unsteadiness in the global heat release response. These coherent flow oscillations can either be self-excited (eg. the Precessing Vortex Core) or result from the hydrodynamic response of the flow field to acoustic forcing. Recent work has focused on understanding the various instability modes and fundamental mechanisms that control hydrodynamic instability in single nozzle swirl flows. However, the effect of multiple closely spaced nozzles as well as the non-axisymmetric nature of the confinement imposed by the combustor liner on swirl nozzle flows remains as yet unexplored. We study the influence of inter-nozzle spacing and non-axisymmetric confinement on the local temporal and spatiotemporal stability characteristics of multi-nozzle flows in this paper. The base flow model for the multi nozzle case is constructed by superposing contributions from a base flow model for each individual nozzle. The influence of the flame is captured by specifying a spatially varying base flow density field. The non-axisymmetric local stability problem is posed in terms of a parallel base flow with spatial variations in the two directions perpendicular to the streamwise direction. We investigate the case of a single nozzle and three nozzles arranged in a straight line within a rectangular combustor. The results show that geometric confinement imposed by the combustor walls has a quantitative impact on the eigenvalues of the hydrodynamic modes. Decreasing nozzle spacing for a given geometric confinement configuration makes the flow more unstable. The presence of an inner shear layer stabilized flame results in an overall stabilization of the flow instability. We also discuss qualitatively, the underlying vorticity dynamics mechanisms that influence the characteristics of instability modes in triple nozzle flows.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In