Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigations on Influence of Uniform Blade Surface Roughness on the Performance Characteristics of a Transonic Axial Flow Compressor Stage

[+] Author Affiliations
Ravi J. Chotalia, Dilipkumar Bhanudasji Alone

CSIR-NAL, Bangalore, India

Paper No. GTINDIA2017-4594, pp. V001T01A008; 11 pages
  • ASME 2017 Gas Turbine India Conference
  • Volume 1: Compressors, Fans and Pumps; Turbines; Heat Transfer; Combustion, Fuels and Emissions
  • Bangalore, India, December 7–8, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5850-9
  • Copyright © 2017 by ASME


Application of surface roughness to rotating mechanical bodies will result into performance degradation. In Aviation Industry, one of the most affecting causes for performance or efficiency degradation of gas turbine engine is the blade surface roughness. The aerosols which are very small particles in the atmosphere having diameters in the microns, impinges to the compressor blade inside the aircraft engine at higher altitudes. The aerosols damages surfaces of the compressor blades. Despite of having small dimensions, due to higher velocity of the aircraft, aerosol’s impinging creates roughened surfaces and fouling. This paper is an attempt to numerically evaluate the performance degradation of the single stage transonic axial flow compressor due to uniform roughness created by the aerosols. Various cases with different roughness on various sections of the blades are analyzed to study and identify which section of the blade is more influenced by roughness. The transonic axial flow compressor has a capability of producing 1.36 stage total pressure ratio, swallowing air mass flow rate of 23 kg/s at rated design speed of 12930 rpm is used for the steady state numerical analysis. A systematic steady state 3-dimensional numerical study using solver with SST k-ω turbulence model has been carried out to evaluate the impact of blade surface roughness on the performance of compressor stage. Moreover, cases with the aerosols having different dimensions and their resulting effect is also studied to find out how performance varies when the aircraft enters into atmosphere having big aerosols from the atmosphere having smaller one and vice-e-versa.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In