0

Full Content is available to subscribers

Subscribe/Learn More  >

Hybrid-Electric Turbocharger and High-Speed SiC Variable-Frequency Drive Using Sensorless Control Algorithm

[+] Author Affiliations
Andrew L. Carpenter, Troy L. Beechner, Brian E. Tews, Paul E. Yelvington

Mainstream Engineering Corporation, Rockledge, FL

Paper No. ICEF2017-3521, pp. V002T05A001; 9 pages
doi:10.1115/ICEF2017-3521
From:
  • ASME 2017 Internal Combustion Engine Division Fall Technical Conference
  • Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development
  • Seattle, Washington, USA, October 15–18, 2017
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5832-5
  • Copyright © 2017 by ASME

abstract

Electrically-assisted engine boosting systems lend themselves to better throttle response, wider effective operating ranges, and can provide the ability to extract excess energy during deceleration and high-load events (and store it in a vehicle’s onboard batteries). This can lead to better overall vehicle performance, emissions, and efficiency while allowing for further engine downsizing and increased power density.

In this research effort, a hybrid-electric turbocharger, variable-frequency drive (VFD), and novel sensorless control algorithm were developed. An 11kW permanent-magnet machine was coupled to a commercial turbocharger via an in-line, bolt-on housing attached to the compressor inlet. A high-efficiency, high-temperature variable-frequency drive, consisting of custom control and power electronics, was also developed. The variable-frequency drive uses SiC MOSFETS to achieve high-switching frequency and can be cooled using an existing engine coolant loop operating at up to 105 °C at an efficiency greater than 98%. A digital sliding mode-observer (DSMO) sensorless speed control algorithm was created to command and regulate speed and achieved ramp rates of over 68,000 rpm/sec.

A two-machine benchtop motor/generator test stand was constructed for initial testing and tuning of the VFD and sensorless control algorithm. A gas blow-down test stand was constructed to test the mechanical operation of the hybrid-electric turbocharger and speed control using the VFD. In addition, a liquid-pump cart was assembled for high-temperature testing of the VFD. Initial on-engine testing is planned for later this year. This paper intends to present a design overview of the in-line, hybrid-electric device, VFD, and performance characterization of the electronics and sensorless control algorithm.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In