Full Content is available to subscribers

Subscribe/Learn More  >

Design of an Agent-Based Technique for Controlling Interconnected Distributed Energy Resource Transactions

[+] Author Affiliations
Samantha Janko, Nathan G. Johnson

Arizona State University, Mesa, AZ

Paper No. DETC2017-68346, pp. V02AT03A027; 9 pages
  • ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2A: 43rd Design Automation Conference
  • Cleveland, Ohio, USA, August 6–9, 2017
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5812-7
  • Copyright © 2017 by ASME


Electricity has traditionally been a commodity that is bought and sold through a rigid marketplace between an electric utility and a ratepayer. Today, however, the electricity market is rapidly evolving to be comprised of distributed energy resources and microgrids that change the structure of the technical and financial relationship between utilities and ratepayers. Regulation, a reduction in cost of renewable energy technologies, interoperability and improved communications, and public interest in green power are facilitating this transition. Microgrids require an additional layer of control, often use preprogrammed rule sets, and lack bi-directional self-awareness, self-management, and self-diagnostics necessary to dynamically adapt to changes on-site and in the grid. Research is needed in optimization and controls. This study explores the viability of self-organizing control algorithms to manage multiple distributed energy resources within a distribution network and reduce electricity cost to one or more ratepayers having such resources installed on-site. Such research provides insight into the transition from a traditional power distribution architecture into a flexible smart network that is better prepared for future technological advances, renewables integration, and customer-side control. Agent-based techniques are employed for least-cost optimization and implements these to manage transactions between three decentralized distributed energy resource systems within an electrical network.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In