Full Content is available to subscribers

Subscribe/Learn More  >

Benchmarking the Performance of a Machine Learning Classifier Enabled Multiobjective Genetic Algorithm on Six Standard Test Functions

[+] Author Affiliations
Kayla Zeliff, Walter Bennette

Air Force Research Laboratory, Rome, NY

Scott Ferguson

North Carolina State University, Raleigh, NC

Paper No. DETC2017-68332, pp. V02AT03A010; 17 pages
  • ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2A: 43rd Design Automation Conference
  • Cleveland, Ohio, USA, August 6–9, 2017
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5812-7
  • Copyright © 2017 by ASME


Previous work tested a multi-objective genetic algorithm that was integrated with a machine learning classifier to reduce the number of objective function calls. Four machine learning classifiers and a baseline “No Classifier” option were evaluated. Using a machine learning classifier to create a hybrid multiobjective genetic algorithm reduced objective function calls by 75–85% depending on the classifier used. This work expands the analysis of algorithm performance by considering six standard benchmark problems from the literature. The problems are designed to test the ability of the algorithm to identify the Pareto frontier and maintain population diversity. Results indicate a tradeoff between the objectives of Pareto frontier identification and solution diversity. The “No Classifier” baseline multiobjective genetic algorithm produces the frontier with the closest proximity to the true frontier while a classifier option provides the greatest diversity when the number of generations is fixed. However, there is a significant reduction in computational expense as the number of objective function calls required is significantly reduced, highlighting the advantage of this hybrid approach.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In