0

Full Content is available to subscribers

Subscribe/Learn More  >

Current Status of the Characterization of RPV Materials Harvested From the Decommissioned Zion Unit 1 Nuclear Power Plant

[+] Author Affiliations
Thomas M. Rosseel, Mikhail A. Sokolov, Xiang Chen, Randy K. Nanstad

Oak Ridge National Laboratory, Oak Ridge, TN

Paper No. PVP2017-65090, pp. V01BT01A059; 10 pages
doi:10.1115/PVP2017-65090
From:
  • ASME 2017 Pressure Vessels and Piping Conference
  • Volume 1B: Codes and Standards
  • Waikoloa, Hawaii, USA, July 16–20, 2017
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5791-5
  • Copyright © 2017 by ASME

abstract

The decommissioning of Units 1 and 2 of the Zion Nuclear Power Station in Zion, Illinois, after ∼ 15 effective full-power years of service presents a unique opportunity to characterize the degradation of in-service reactor pressure vessel (RPV) materials and to assess currently available models for predicting radiation embrittlement of RPV steels [1–3]. Moreover, through-wall thickness attenuation and property distributions are being obtained and the results to be compared with surveillance specimen test data. It is anticipated that these efforts will provide a better understanding of materials degradation associated with extending the lifetime of existing nuclear power plants (NPPs) beyond 60 years of service and subsequent license renewal. In support of extended service and current operations of the US nuclear reactor fleet, the Oak Ridge National Laboratory (ORNL), through the U.S. Department of Energy, Light Water Reactor Sustainability (LWRS) Program, coordinated procurement of materials, components, and other items of interest from the decommissioned Zion NPPs. In this report, harvesting, cutting sample blocks, machining test specimens, test plans, and the current status of materials characterization of the RPV from the decommissioned Zion NPP Unit 1 will be discussed. The primary foci are the circumferential, Linde 80 flux, wire heat 72105 (WF-70) beltline weld and the A533B base metal from the intermediate shell harvested from a region of peak fluence (0.7 × 1019 n/cm2, E > 1.0 MeV) on the internal surface of the Zion Unit 1 vessel. Following the determination of the through-thickness chemical composition, Charpy impact, fracture toughness, tensile, and hardness testing are being performed to characterize the through-thickness mechanical properties of base metal and beltline-weld materials. In addition to mechanical properties, microstructural characterizations are being performed using various microstructural techniques, including Atom Probe Tomography, Small Angle Neutron Scattering, and Positron Annihilation Spectroscopy.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In