Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Mechanical Model on Limit Load Analysis of High Pressure Heater Tubesheet

[+] Author Affiliations
Yan-Nan Du, Xiao-Ying Tang, Zhen-Bang Wang, Shao-jun Wang

Shanghai Institute of Special Equipment Inspection and Technical Research, Shanghai, China

Jia-huan Wang, Zhi-Gang Yang, Yi-Feng Ren

Shanghai Electric Power Generation Equipment Co. Ltd. Power Station Auxiliary Equipment Plant, Shanghai, China

Paper No. PVP2017-65613, pp. V01BT01A032; 9 pages
  • ASME 2017 Pressure Vessels and Piping Conference
  • Volume 1B: Codes and Standards
  • Waikoloa, Hawaii, USA, July 16–20, 2017
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5791-5
  • Copyright © 2017 by ASME


Tubesheet is the main part of high pressure heater, which is very thick based on chinese code GB151 for the design of heat exchangers. Increased tubesheet with large thermal stress are not conducive to manufacture, heat transmission and detection. The stress and structure of tubesheet are so complex that the time costs too large during the analysis design, and stress classification exists uncertainty. Limit load method contributes to tubesheet lightweight. 3-D finite element model used for analysis design should be simplified reasonably. In this paper, the effect of mechanical model on limit load analysis of high pressure heater tubesheet conforming to the design-by-analysis code is researched. It is found that the tubesheet could pass the plastic collapse assessment, and the thickness of tubesheet could be decreased. The difference between the equivalent sold tubesheet model and the whole tubesheet model exists during plastic collapse assessment. Though the local stress distribution is different, the limit load results occurred plastic collapse by the equivalent sold tubesheet model is close to that by the whole tubesheet model. The limit load occurred plastic collapse is influenced by max circular diameter of tube layout little. The reason is attributed to original tubesheet owning enough rigidity related to thickness, and high stress appeares on the inner wall of jointing of tubesheet with head. The equivalent sold tubesheet model could be used for primary evaluation of limit load, and the whole tubesheet model is suited for partial analysis. The results provide some reference for the design-by-analysis of high pressure heater tubesheet.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In