0

Full Content is available to subscribers

Subscribe/Learn More  >

Case Study of Shakedown Evaluation of a Shell With Nozzle Based on Elastic-Plastic Analysis

[+] Author Affiliations
Jun Shen, Yanfang Tang

Wison Engineering Co., Ltd., Shanghai, China

Heng Peng, Yinghua Liu

Tsinghua University, Beijing, China

Liping Wan

Sinopec Engineering Incorporation, Beijing, China

Paper No. PVP2017-65492, pp. V01BT01A028; 9 pages
doi:10.1115/PVP2017-65492
From:
  • ASME 2017 Pressure Vessels and Piping Conference
  • Volume 1B: Codes and Standards
  • Waikoloa, Hawaii, USA, July 16–20, 2017
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5791-5
  • Copyright © 2017 by ASME

abstract

In the past, shakedown evaluation was usually based on the elastic method that the sum of the primary and secondary stress should be limited to 3Sm or the simplified elastic-plastic analysis method. The elastic method is just an approximate analysis, and the rigorous evaluation of shakedown normally requires an elastic-plastic analysis. In this paper, using an elastic perfectly plastic material model, the shakedown analysis was performed by a series of elastic-plastic analyses. Taking a shell with a nozzle subjected to parameterized temperature loads as an example, the impact of temperature change on the shakedown load was discussed and the shakedown loads of this structure at different temperature change rates were also obtained. This study can provide helpful references for engineering design.

Copyright © 2017 by ASME
Topics: Nozzles , Shells

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In