0

Full Content is available to subscribers

Subscribe/Learn More  >

Study on Numerical Simulation of Gas-Solid Erosion for Feed Type Tee

[+] Author Affiliations
Zhou Fang, Deyu Liu, Guanghai Li

China Special Equipment Inspection and Research Institute (CSEI), Beijing, China

Weiwei Hu

China University of Petroleum-Beijing, Beijing, China

Paper No. PVP2017-65092, pp. V01BT01A023; 4 pages
doi:10.1115/PVP2017-65092
From:
  • ASME 2017 Pressure Vessels and Piping Conference
  • Volume 1B: Codes and Standards
  • Waikoloa, Hawaii, USA, July 16–20, 2017
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5791-5
  • Copyright © 2017 by ASME

abstract

A series of numerical simulation about gas-solid erosion for feed type tee have been taken out. The gas-solid two phase flow was formed in the tee with the solid particles coming from the top of the tee pipes and air blowing from the left side. Tee pipes erosion situation was simulated by DPM model in Fluent software. The serious erosion location in the tee pipes was analyzed with different speeds of solid and air. The reasonable distribution method of the particle velocity and gas velocity was put forward and the particles were remained in the intermediate position of the pipes. So the collision with the wall was reduced, and the pipeline erosion rate was slowed down, in addition, the service life of pipes was prolonged.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In