0

Full Content is available to subscribers

Subscribe/Learn More  >

Mistuned Higher-Order Mode Forced Response of an Embedded Compressor Rotor: Part II — Mistuned Forced Response Prediction

[+] Author Affiliations
Jing Li, Robert Kielb

Duke University, Durham, NC

Nyansafo Aye-Addo, Nicole Key

Purdue University, West Lafayette, IN

Paper No. GT2017-64647, pp. V07BT36A023; 13 pages
doi:10.1115/GT2017-64647
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5093-0
  • Copyright © 2017 by ASME

abstract

This paper is the second part of a two-part paper that presents a comprehensive study of the higher-order mode mistuned forced response of an embedded rotor blisk in a multi-stage axial research compressor. The resonant response of the second-stage rotor (R2) in its first chordwise bending (1CWB) mode due to the second harmonic of the periodic passing of its neighboring stators (S1 and S2) is investigated computationally and experimentally at three steady loading conditions in the Purdue Three-Stage Compressor Research Facility. A Non-Intrusive Stress Measurement System (NSMS, or blade tip-timing) is used to measure the blade vibration. Two reduced-order mistuning models of different levels of fidelity are used, namely the Fundamental Mistuning Model (FMM) and the Component Mode Mistuning (CMM), to predict the response. Although several modes in the 1CWB modal family appear in frequency veering and high modal density regions, they do not heavily participate in the response such that very similar results are produced by the FMM and the CMM models of different sizes. A significant response amplification factor of 1.5∼2.0 is both measured and predicted, which is on the same order of magnitude of what was commonly reported for low-frequency modes. This amplification is also a strong, non-monotonic function of the steady loading. Moreover, on average, the mistuned blades respond at an amplitude only approximately 40% that of the tuned, much lower than what was commonly reported (75∼80%). This is due to the very low level of structural coupling associated with the 1CWB family of the rotor blisk. In this study, a very good agreement between predictions and measurements is achieved for the deterministic analysis. This is complemented by a sensitivity analysis which shows that the mistuned system is highly sensitive to the discrepancies in the experimentally determined blade frequency mistuning.

Copyright © 2017 by ASME
Topics: Compressors , Rotors

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In