0

Full Content is available to subscribers

Subscribe/Learn More  >

Comparison of the Influence Coefficient Method and Travelling Wave Mode Approach for the Calculation of Aerodynamic Damping of Centrifugal Compressors and Axial Turbines

[+] Author Affiliations
K. Vogel, A. D. Naidu, M. Fischer

ABB Turbocharging, Baden, Switzerland

Paper No. GT2017-64643, pp. V07BT36A022; 9 pages
doi:10.1115/GT2017-64643
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5093-0
  • Copyright © 2017 by ASME

abstract

The prediction of aerodynamic damping is a key step towards high fidelity forced response calculations. Without the knowledge of absolute damping values, the resulting stresses from forced response calculations are often afflicted with large uncertainties. In addition, with the knowledge of the aerodynamic damping the aeroelastic contribution to mistuning can be considered. The first section of this paper compares two methods of one-way-coupled aerodynamic damping computations on an axial turbine. Those methods are: the aerodynamic influence coefficient, and the travelling wave mode method. Excellent agreement between the two methods is found with significant differences in required computational time. The average deviation between all methods for the transonic turbine is 4%. Additionally, the use of transient blade row methods with phase lagged periodic boundaries are investigated and the influence of periodic boundaries on the aerodynamic influence coefficients are assessed. A total of 23 out of 33 passages are needed to remove all influence from the periodic boundaries for the present configuration. The second part of the paper presents the aerodynamic damping calculations for a centrifugal compressor. Simulations are predominantly performed using the aerodynamic influence coefficient approach. The influence of the periodic boundaries and the recirculation channel is investigated. All simulations are performed on a modern turbocharger turbine and centrifugal compressor using ANSYS CFX V17.0 with an inhouse pre- and post-processing procedure at ABB Turbocharging. The comparison to experimental results concludes the paper.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In