0

Full Content is available to subscribers

Subscribe/Learn More  >

Research on Failure of Semi-Open Centrifugal Impeller Under Aerodynamic Load

[+] Author Affiliations
Xudong Chen, Shengli Xu, Xiaofang Wang, Wenying Ju, Shuhua Yang

Dalian University of Technology, Dalian, China

Jigang Meng

Shenyang Blower Works Group Corporation, Shenyang, China

Paper No. GT2017-64564, pp. V07BT36A017; 11 pages
doi:10.1115/GT2017-64564
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5093-0
  • Copyright © 2017 by ASME

abstract

The designs of centrifugal compressors are pushed towards higher pressure ratios, higher mass flow rates, and wider operating conditions. As the change of the actual condition, compressors often operate at low flow rates. There are some important unstable flow conditions at low flow rates such as rotating stall. The exciting forces may cause blade resonance and high dynamic stress level. High cycle fatigue failure is one of the main damage form of compressor impellers. Therefore, the dynamic stress prediction of impeller is an important part of compressor design and failure analysis. This paper is concerned with the prediction of dynamic stress of an actual damaged semi-open centrifugal impellers under unsteady aerodynamic load using a full nonlinear damping model which includes material and aerodynamic damping. Material damping is predicted based on an empirical equation and expressed as a function of stress amplitude. Aerodynamic damping is predicted through unidirectional fluid-structure interaction analysis. In this paper, the aerodynamic damping of the semi-open centrifugal impeller with various vibration amplitudes, modes and operation conditions is estimated. The numerical result indicates that, the material damping increases with the increasing stress amplitude while the aerodynamic damping is independent of the blade vibratory amplitude for a given blade mode. A nonlinear total damping model is then proposed, including both material and aerodynamic damping. The contribution of material damping plays an important part in total damping estimation as well as the aerodynamic damping. With this model, a procedure for dynamic stress estimation is proposed. Aerodynamic load on the surface of the impeller obtained by transient CFD calculation and the load in frequency domain obtained by Fast Fourier Transformation (FFT). Comparing normal condition with low flow condition, the main frequencies of the aerodynamic load are basically coincident and the load amplitude increases significantly under low flow rate. The main frequencies at the leading edge of blades are 4 times, 5 times and 6 times rotation frequency. They may be caused by rotating stall and excite the impeller. As the load of 5 times rotation frequency is maximum, harmonic analysis is performed to estimate the dynamic stress of the semi-open centrifugal compressor blades under the load. The result shows that the resonance stress at the leading edge of the blade under low flow condition is 22 times up on the stress under normal condition. The result of fatigue strength assessment shows that fatigue damage may occur at the leading edge of blades and it is consistent with the actual damaged position of the impeller. Therefore, fatigue damage is likely to happen under low flow rate condition. It is necessary to consider the situation carefully during the design of compressors.

Copyright © 2017 by ASME
Topics: Stress , Impellers , Failure

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In