0

Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Detailing on Aerodynamic Forcing of a Transonic Axial Turbine Stage and Forced-Response Prediction for Low-Engine-Order (LEO) Excitation

[+] Author Affiliations
Tobias R. Müller, Damian M. Vogt

University of Stuttgart, Stuttgart, Germany

Klemens Vogel, Bent A. Phillipsen, Peter Hönisch

ABB Turbo Systems, Baden, Switzerland

Paper No. GT2017-64502, pp. V07BT36A016; 11 pages
doi:10.1115/GT2017-64502
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5093-0
  • Copyright © 2017 by ASME

abstract

The effects of detailing on the prediction of forced-response in a transonic axial turbine stage, featuring a parted stator design, asymmetric inlet and outlet casings as well as rotor cavities, is investigated. Ensuring the mechanical integrity of components is of paramount importance for the safe and reliable operation of turbomachines. Among others, flow induced resonance excitation can lead to high-cycle fatigue (HCF) and potentially to damage of components unless properly damped. This numerical study is assessing the necessary degree of detailing in terms of spatial and temporal discretization, boundary conditions of the pre-stressed rotor geometry as well as geometrical detailing for the reliable prediction of the aerodynamic excitation of the structure. In this context, the sensitivity of the aerodynamic forcing is analyzed by means of the generalized force criterion, showing a significant influence for some of the investigated variations of the numerical model.

Moreover, the origin and further progression of several low-engine-orders (LEO) within the flow field, as well as their interaction with different geometric details has been analyzed based on the numerical results obtained from a full 360° CFD-calculation of the investigated turbine stage. The predicted flow induced vibration of the structure has been validated by means of a full forced-response analysis, where a good agreement with tip-timing data has been found.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In