0

Full Content is available to subscribers

Subscribe/Learn More  >

Characterization of the Modal Characteristics of Structures Operating in Dense Liquid Turbopumps

[+] Author Affiliations
Joseph Chiu

City College of New York, New York, NY

Andrew M. Brown

NASA, Huntsville, AL

Paper No. GT2017-63633, pp. V07BT36A008; 11 pages
doi:10.1115/GT2017-63633
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5093-0

abstract

It is well-known that the natural frequencies of structures immersed in heavy liquids will decrease due to the fluid “added-mass” effect. This reduction has not been precisely determined, though, with indications that it is in the 20–40% range for water. In contrast, the mode shapes of these structures have always been assumed to be invariant in liquids. Recent modal testing at NASA/Marshall Space Flight Center of turbomachinery inducer blades in liquid oxygen, which has a density slightly greater than water, indicates that the mode shapes change appreciably, though. This paper presents a study that examines and quantifies the change in mode shapes as well as more accurately defines the natural frequency reduction. A literature survey was initially conducted and test-verified analytical solutions for the natural frequency reductions were found for simple geometries, including a rectangular plate and an annular disk. The ANSYS© fluid/structure coupling methodology was then applied to obtain numerical solutions, which compared favorably with the published results. This initial study indicated that mode shape changes only occur for non-symmetric boundary conditions. Techniques learned from this analysis were then applied to the more complex inducer model. ANSYS numerical results for both natural frequency and mode shape compared well with modal test in air and water. A number of parametric studies were also performed to examine the effect of fluid density on the structural modes, reflecting the differing propellants used in rocket engine turbomachinery. Some important findings were that the numerical order of mode shapes changes with density initially, and then with higher densities the mode shapes themselves warp as well. Valuable results from this study include observations on the causes and types of mode shape alteration and an improved prediction for natural frequency reduction in the range of 30–41% for preliminary design. Increased understanding and accurate prediction of these modal characteristics is critical for assessing resonant response, correlating finite element models to modal test, and performing forced response in turbomachinery.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In