0

Full Content is available to subscribers

Subscribe/Learn More  >

Interaction of Concurrent Forced Response and Flutter Phenomena in a Compressor Stage

[+] Author Affiliations
Zhiping Mao, Robert E. Kielb

Duke University, Durham, NC

Paper No. GT2017-63376, pp. V07BT36A005; 10 pages
doi:10.1115/GT2017-63376
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5093-0
  • Copyright © 2017 by ASME

abstract

This paper studies a subsonic compressor case with concurrent forced response and flutter by using the Harmonic Balance method, and was inspired by historical experimental data. Forced response was observed when the rotating speed was approaching a crossing on the Campbell diagram, where flutter appeared to be suppressed. CFD simulations are conducted by using a quasi-3D configuration at the mid-span of one stage of a 3.5-stage compressor. Due to the constraint of frequency domain methods, the research is conducted in the vicinity of the 1T-44EO crossing with a small frequency shift between flutter frequency and external excitation frequency. The influence from flutter to forced response is observed: a one-way crosstalk at forced response frequency is observed, presented as the anomaly of unsteady velocity and unsteady pressure near the rear section of rotor blades and in the rotor wake region. The anomaly is speculated as the presence of increasing intensity of shedding vortices induced by the vibration of the blade. To further prove the impact of this viscous effect, a numerical experiment was performed with inviscid rotor blades. In contrast to the crosstalk at forced response frequency, no obvious influence on the unsteady behavior is detected at the flutter frequency, and this observation is confirmed at multiple vibration amplitudes. Considering the relationship between unsteady pressure at flutter frequency and aerodynamic damping, we conclude the influence of forced response on the aerodynamic damping is negligible. In addition, a linearity of unsteady pressure at the flutter frequency vs. vibration amplitude is uncovered. The discoveries provide a proof to linearity assumption and single-frequency simplification widely adopted by industry in flutter simulations.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In