0

Full Content is available to subscribers

Subscribe/Learn More  >

Combinatorial Optimization of Mistuned Blade Rearrangement Based on Reduced-Order FEA Model

[+] Author Affiliations
Tianyuan Liu, Ding Guo, Di Zhang, Yonghui Xie

Xi’an Jiaotong University, Xi’an, China

Paper No. GT2017-63867, pp. V07BT35A013; 11 pages
doi:10.1115/GT2017-63867
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5093-0
  • Copyright © 2017 by ASME

abstract

This paper is focused on the optimization of mistuned blades assembling rearrangement under the forced response. First, in order to avoid the greatly increase of the calculation greatly by the whole circle bladed-disk finite element model, a reduced-order model is developed based on the component mode synthesis. CPU+GPU heterogeneous architecture parallel computation is used to accelerate modal analysis of the disk and blade sectors substructures. Second, a modified ant colony algorithm is applied to the combinatorial optimization to find the optimal rearrangement pattern of bladed-disk assembly. Different from classical algorithm, the individual mistuned information is used to construct heuristic function based on intentional mistuning pattern, which can avoid slow convergence of ant colony algorithm and increase the search speed efficiently. At last, a high-fidelity 3D FEM model with 43 mistuned blades is used to demonstrate the capabilities of the techniques in reducing the maximum displacement resonance response of the bladed-disk system. The numerical simulation showed that this program based on the reduced-order model proposed in this article gained 4.3 speedup compared with ANSYS full model under the scale of 500k nodes. The displacement response amplitude of the blades decreased by 32% with 60 steps (1200 times FEM calculation) by the new optimization method. The physical mechanism of reducing the bladed-disk response is explained by comparing the optimized and worst arrangement patterns. The results clearly demonstrate that the optimized rearrangement pattern of mistuned blades is able to reduce the response amplitude of the forced vibration significantly, and the algorithm proposed in this article is practical and effective.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In