0

Full Content is available to subscribers

Subscribe/Learn More  >

Identification of Vibrational Resonances of Centrifugal Compressor and Radial Turbine Impellers Interacting With General Pressure Pulsations

[+] Author Affiliations
Zhusan Luo, Mike Stanko, Carl Schwarz, Zhihong Annie Wang

Praxair, Inc., Tonawanda, NY

Paper No. GT2017-63702, pp. V07BT35A010; 9 pages
doi:10.1115/GT2017-63702
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5093-0
  • Copyright © 2017 by ASME

abstract

Vibrational resonances of centrifugal compressor and radial inflow turbine impellers are usually identified using either Kushner’s or Singh’s parametric equations in product design and failure analysis. These equations were developed based on positive work accumulated within a certain time period. However, some resonances observed in simulation and testing cannot be understood with those resonance equations.

This paper presents an alternative method to derive vibrational resonance conditions. A new model of general pressure pulsations is developed by taking into account the disturbances resulting from stationary obstacles and rotating blades. Analytical solutions of the forced vibration responses of a rotating disk subjected to different pressure pulsations are then formulated. From the forced responses, both Kushner’s and Singh’s equations can be derived. They can further prove to be equivalent though they focus on different physics.

A general resonance condition is derived from the analytical solutions. This condition is a necessary condition, i.e. all resonances must meet this condition while a system following the condition may or may not be in resonance, depending upon excitation sources. It is noticed that the excitation sources could be related to harmonics due to stationary obstacles, harmonics with combined harmonic orders, or even harmonics to be understood. This general resonance condition can hence provide more “possible resonance points” and assist identifying resonances from more representative modes and more excitation sources. It has been validated by predicting vibrational resonances observed in three centrifugal compressors. This condition has also been successfully employed in the failure analysis and design modification of a radial inflow turbine impeller.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In