0

Full Content is available to subscribers

Subscribe/Learn More  >

Subsynchronous Vibration Patterns Under Reduced Oil Supply Flow Rates

[+] Author Affiliations
B. R. Nichols, R. L. Fittro, C. P. Goyne

University of Virginia, Charlottesville, VA

Paper No. GT2017-65040, pp. V07BT33A010; 11 pages
doi:10.1115/GT2017-65040
From:
  • ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5093-0
  • Copyright © 2017 by ASME

abstract

Many high-speed, rotating machines across a wide range of industrial applications depend on fluid film bearings to provide both static support of the rotor and to introduce stabilizing damping forces into the system through a developed hydrodynamic film wedge. Reduced oil supply flow rate to the bearings can cause cavitation, or a lack of a fully developed film layer, at the leading edge of the bearing pads. Reducing oil flow has the well-documented effects of higher bearing operating temperatures and decreased power losses due to shear forces. While machine efficiency may be improved with reduced lubricant flow, little experimental data on its effects on system stability and performance can be found in the literature. This study looks at overall system performance of a test rig operating under reduced oil supply flow rates by observing steady-state bearing performance indicators and baseline vibrational response of the shaft. The test rig used in this study was designed to be dynamically similar to a high-speed industrial compressor. It consists of a 1.55 m long, flexible rotor supported by two tilting pad bearings with a nominal diameter of 70 mm and a span of 1.2 m. The first bending mode is located at approximately 5,000 rpm. The tiling-pad bearings consist of five pads in a vintage, flooded bearing housing with a length to diameter ratio of 0.75, preload of 0.3, and a load-between-pad configuration. Tests were conducted over a number of operating speeds, ranging from 8,000 to 12,000 rpm, and bearing loads, while systematically reducing the oil supply flow rates provided to the bearings under each condition. For nearly all operating conditions, a low amplitude, broadband subsynchronous vibration pattern was observed in the frequency domain from approximately 0–75 Hz. When the test rig was operated at running speeds above its first bending mode, a distinctive subsynchronous peak emerged from the broadband pattern at approximately half of the running speed and at the first bending mode of the shaft. This vibration signature is often considered a classic sign of rotordynamic instability attributed to oil whip and shaft whirl phenomena. For low and moderate load conditions, the amplitude of this 0.5x subsynchronous peak increased with decreasing oil supply flow rate at all operating speeds. Under the high load condition, the subsynchronous peak was largely attenuated. A discussion on the possible sources of this subsynchronous vibration including self-excited instability and pad flutter forced vibration is provided with supporting evidence from thermoelastohydrodynamic (TEHD) bearing modeling results. Implications of reduced oil supply flow rate on system stability and operational limits are also discussed.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In