0

Full Content is available to subscribers

Subscribe/Learn More  >

Strain Estimation From Conductivity Changes in Piezoresistive Nanocomposites

[+] Author Affiliations
T. N. Tallman

Purdue University, West Lafayette, IN

Paper No. SMASIS2016-9012, pp. V001T05A004; 7 pages
doi:10.1115/SMASIS2016-9012
From:
  • ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Multifunctional Materials; Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Structural Health Monitoring
  • Stowe, Vermont, USA, September 28–30, 2016
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5048-0
  • Copyright © 2016 by ASME

abstract

Carbon nanofiller-modified composites have incredible potential for self-sensing and structural health monitoring (SHM) because they are piezoresistive. That is, the electrical conductivity of a nanocomposite is inherently coupled with mechanical perturbations such as damage and strain. Because of the correspondence of strain and damage with conductivity changes, non-invasive conductivity imaging techniques such as electrical impedance tomography (EIT) can enable unprecedented insight into the mechanical state of a nanofiller-modified composite. Furthermore, because of the potential of nanocomposites for self-sensing and SHM, considerable effort has been dedicated to studying the effect of strain on nanocomposite conductivity. That is, these efforts seek to determine the change in conductivity of a nanocomposite for a prescribed strain. However, from a SHM perspective, knowing the inverse relation would be much more useful. In other words, for an observed conductivity change, what is the underlying strain state? In light of the potential of EIT to provide insight into the conductivity distribution of a strained nanocomposite, we herein develop a method of estimating the infinitesimal strain tensor of a piezoresistive nanocomposite for observed conductivity changes. This is done by formulating an inverse problem that seeks to minimize the difference between an observed conductivity and a piezoresistivity model that predicts nanocomposite conductivity as a function of the strain in the least-squares sense. Next, this approach is specialized to the finite element method such that the nodal displacements giving rise to an observed conductivity change can be ascertained. Lastly, this method is tested analytically with noisy data. It is found that the proposed method can accurately reproduce nodal displacements and therefore strains from conductivity data.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In