Full Content is available to subscribers

Subscribe/Learn More  >

Systematic Design of a Piezo-Electric Stack Energy Harvester From Walking Locomotion

[+] Author Affiliations
Siddharth Balasubramanian, Ya Wang

State University of New York, Stony Brook, Stony Brook, NY

Haili Liu

Shanghai Tech University, Shanghai, ChinaState University of New York, Stony Brook, Stony Brook, NY

Paper No. SMASIS2016-9306, pp. V001T04A015; 7 pages
  • ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Multifunctional Materials; Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Structural Health Monitoring
  • Stowe, Vermont, USA, September 28–30, 2016
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5048-0
  • Copyright © 2016 by ASME


This paper presents a systematic design of a piezoelectric stack energy harvester from human walking locomotion. The proposed footstep energy harvester is a mobile energy harvesting device that comprises of four sets of piezo-electric stack with force amplification frame assembly with associated power electronics. The objective of this work is to optimize the output power from each piezo-electric stack for which a high-efficiency force amplification frame was developed. Considering the nature of the application, High-Strength A514 Alloy Steel was chosen as the frame material and SONOX SP 505 as the piezo-electric stack in d33 configuration. The mathematical formulation of real-time human walking force excitation was also vital in the study. In this paper, a real-time equation of human Vertical Ground Reaction Forces (VGRF) was used for the systematic modeling and simulation process. Following the success of piezoelectric electro-mechanical modeling and simulation, a prototype of four sets of force-amplification frames each with a piezoelectric stack installed inside were fabricated and assembled into a unique constrainer box — such an assembled device was fit into the heel of a 12″ Field and Stream® boot to effectively convert kinetic energy from walking locomotion to electricity and therefore, to power a wireless sensor. The uniqueness of the work is to develop an easy-fit footstep energy harvester with much higher power density than similar design in the literature. In particular, the developed energy harvesting device is not visible externally and does not affect the walking gait pattern of the user. Moreover, our design only adds 0.25 kg to the self-weight of 0.85 kg of the boot. A peak power of 130 mW and peak Voltage of 118 V was recorded for an 80 kg person walking. This type of energy harvester will find its application in clean-energy generation in remote areas without electricity access.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In