0

Full Content is available to subscribers

Subscribe/Learn More  >

Articulating Turbine Rotor Blade Concept for Improved Off-Design Performance of Gas Turbine Engines

[+] Author Affiliations
Muthuvel Murugan, Anindya Ghoshal, Luis Bravo

U.S. Army Research Laboratory, Aberdeen Proving Ground, MD

Fei Xu, Ming-Chen Hsu

Iowa State University, Ames, IA

Yuri Bazilevs

University of California, San Diego, CA

Kevin Kerner

U.S. Army Aviation & Missile Research Development & Engineering Center - Aviation Development Directorate, Fort Eustis, VA

Paper No. SMASIS2016-9045, pp. V001T04A004; 7 pages
doi:10.1115/SMASIS2016-9045
From:
  • ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Multifunctional Materials; Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Structural Health Monitoring
  • Stowe, Vermont, USA, September 28–30, 2016
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5048-0
  • Copyright © 2016 by ASME

abstract

Gas turbine engines are generally optimized to operate at nearly a fixed speed with fixed blade geometries for the design operating condition. When the operating condition of the engine changes, the flow incidence angles may not be optimum with the blade geometry resulting in reduced off-design performance. Articulating the pitch angle of turbine blades in coordination with adjustable nozzle vanes can improve performance by maintaining flow incidence angles within the optimum range at all operating conditions of a gas turbine engine. Maintaining flow incidence angles within the optimum range can prevent the likelihood of flow separation in the blade passage and also reduce the thermal stresses developed due to aerothermal loads for variable speed gas turbine engine applications. U.S. Army Research Laboratory has partnered with University of California San Diego and Iowa State University Collaborators to conduct high fidelity stator-rotor interaction analysis for evaluating the aerodynamic efficiency benefits of articulating turbine blade concept. The flow patterns are compared between the baseline fixed geometry blades and articulating conceptual blades. The computational fluid dynamics studies were performed using a stabilized finite element method developed by the Iowa State University and University of California San Diego researchers. The results from the simulations together with viable smart material based technologies for turbine blade actuations are presented in this paper.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In