Full Content is available to subscribers

Subscribe/Learn More  >

Stiffness Tuning of NiTi Implants Through Aging

[+] Author Affiliations
Narges Shayesteh Moghaddam, Amirhesam Amerinatanzi, Mohammad Elahinia

University of Toledo, Toledo, OH

Soheil Saedi, Ali Sadi Turabi, Haluk Karaca

University of Kentucky, Lexington, KY

Paper No. SMASIS2016-9289, pp. V001T02A014; 6 pages
  • ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Multifunctional Materials; Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Structural Health Monitoring
  • Stowe, Vermont, USA, September 28–30, 2016
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5048-0
  • Copyright © 2016 by ASME


NiTi alloys are interesting materials for biomedical implants since they offer unique characteristics such as superelastic behavior, low stiffness (I.e., modulus of elasticity) close to that of the cortical bone, and shock absorption. Thermal treatments are the most common and practical ways to improve the superelasticity of these alloys. In addition to the superelastic behavior of the metallic implants, it is important for the implants to have a stiffness similar to that of cortical bone in order to reduce the risk of failure caused by stress shielding. The cortical bone has a stiffness ranging from 12 to 31 GPa for different patients (e.g., sex, age, mechanical behavior of bone) and various bone locations (e.g., jaw implant, hip implant), while the untreated Ni-rich NiTi has the stiffness equal to 41.37 GPa. One recently used technique to lower the stiffness of NiTi implant is to introduce porosity into the implant. The major problem associated with the imposed porosity is stress concentration on the pore walls and the subsequent implant failure. In this work, the purpose is to tune the stiffness via changing the post-heat treatment conditions, i.e., aging time and aging temperature.

In this study, several bulk specimens of Ni-rich NiTi (SLM Ni50.8Ti49.2) were additively manufactured using selective laser melting (SLM) technique. The samples were solution annealed (950 °C, 5.5 h) and subsequently water quenched to provide equilibrium state in the samples. Subsequently, different aging conditions (350 °C and 450 °C for 5 to 18 hours) were applied to the samples. Mechanical testing (compression) was conducted on the samples and the stiffness of each sample was defined to investigate the effect of aging on the stiffness.

Our results indicate that the range of 29.9 to 43.7 GPa for stiffness can be achieved through the implant via different time period and temperatures for aging. The modulus of 43.7 GPa is attributed to 10 hours heat treatment under 450 °C and the modulus of 29.9 GPa is attributed to 18 hours heat treatment under 350 °C.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In