0

Full Content is available to subscribers

Subscribe/Learn More  >

Noise Reduction in a High Lift Wing Using SMAs: Computational Fluid-Structural Analysis

[+] Author Affiliations
William Scholten, Ryan Patterson, Darren Hartl, Thomas Strganac

Texas A&M University, College Station, TX

Jeff Volpi, Quentin Chapelon

ÉNISE, Saint-Étienne, France

Travis Turner

NASA Langley Research Center, Hampton, VA

Paper No. SMASIS2016-9196, pp. V001T02A009; 11 pages
doi:10.1115/SMASIS2016-9196
From:
  • ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Multifunctional Materials; Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Structural Health Monitoring
  • Stowe, Vermont, USA, September 28–30, 2016
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5048-0
  • Copyright © 2016 by ASME

abstract

The leading-edge-slat on an aircraft is a significant contributor to the airframe noise during the low speed maneuvers of approach and landing. It has been shown in previous work that the slat noise may be reduced with a slat-cove filler (SCF). The objective of this current work is to determine how the SMA SCF behaves under steady flow using finite element structural models and finite volume (FV) fluid models based on a scaled wind tunnel model of a newly considered multi-element wing with a SCF. Computational fluid dynamics (CFD) analysis of the wing is conducted at multiple angles of attack, different flow speeds and high lift device deployment states. The FV fluid models make use of overset meshes, which overlap a slave mesh (that can undergo movement and deformation) unto a fixed master mesh, allowing for retraction and deployment of the slat and flap in the CFD analysis. The structural and fluid models are linked using a previously developed framework that permits the use of custom user material subroutines (for superelastic response of the SMA material) in the structural model, allowing for the performance of fluid-structure interaction (FSI) analysis. The fluid and structural solvers are weakly coupled such that the fluid solver transfers pressure data and the structural solver transfers displacements, but the physical quantities of each program are solved independently. FSI results are shown for the cases of the slat/SCF in the fully-deployed configuration as well as for the case of the slat/SCF undergoing retraction in flow.

Copyright © 2016 by ASME
Topics: Fluids , Noise control , Wings

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In