Full Content is available to subscribers

Subscribe/Learn More  >

Invariant Representation of Wave Propagation Properties for a Mono-Coupled Electro-Mechanical Periodic Structure

[+] Author Affiliations
Edoardo Belloni, Francesco Braghin, Gabriele Cazzulani, Mattia Cenedese

Politecnico di Milano, Milano, Italy

Paper No. SMASIS2016-9117, pp. V001T02A004; 11 pages
  • ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • Volume 1: Multifunctional Materials; Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Structural Health Monitoring
  • Stowe, Vermont, USA, September 28–30, 2016
  • Conference Sponsors: Aerospace Division
  • ISBN: 978-0-7918-5048-0
  • Copyright © 2016 by ASME


During the last decades, a growing interest has been devoted to periodic structures and metamaterials. One of the most interesting characteristics of this class of materials is that they present a transmission gap for given frequency ranges. This peculiar characteristic has many potential applications: from optics to seismic isolation, from filtering to wave guiding. In literature, different approaches were developed to study such kind of structures. In this paper, using an approach based on transfer matrices of a single unit cell and its invariants, a way to represent in compact form the behavior of a mono-coupled periodic structure is presented. As a result, the wave propagation properties are shown as being dependent both on the frequency range and on some chosen design parameters. Furthermore, the adding of multiphysics materials (in the case of this paper piezoelectric inserts with dedicated electric circuits) inside the structure allows, through the tuning of both the mechanical and the electrical parameters, to actively control the bandgap position. This approach also allows checking the robustness of parameter choices with respect to desired bandgap frequency ranges. Finally, some applications of this method for active control of wave propagation are presented.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In