0

Full Content is available to subscribers

Subscribe/Learn More  >

Microstructure and Toughness of Weld CGHAZ Under Different Heat Input for X90 High Strength Pipeline Steel

[+] Author Affiliations
Liuqing Yang, Yongli Sui, PeiPei Xia, Die Yang

China Petroleum Pipeline Research Institute, Langfang, China

Yongqing Zhang

CITIC Metal Co. LTD., Beijing, China

Paper No. IPC2016-64665, pp. V003T05A056; 6 pages
doi:10.1115/IPC2016-64665
From:
  • 2016 11th International Pipeline Conference
  • Volume 3: Operations, Monitoring and Maintenance; Materials and Joining
  • Calgary, Alberta, Canada, September 26–30, 2016
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5027-5
  • Copyright © 2016 by ASME

abstract

Two kinds of industry trial X90 pipeline steel which had different chemical composition were chosen as experimental materials, and the grain coarsening, microstructure evolution characteristics and the variation rules of low-temperature impact toughness in weld CGHAZ of this two steel under different welding heat input were studied by physical thermal simulation technology, SEM, optical microscope and Charpy impact test. The results show that microstructure in weld CGHAZ of 1# steel is mainly bainite ferrite (BF) and most of the M/A constituents are blocky or short rod-like; the grains of 2# steel are coarse and there is much granular bainite (GB), meanwhile M/A constituents become coarse and their morphology is changing from block to elongated laths; alloy content of X90 pipeline steel under different welding heat input has great effect on the grain size of original austenite, and when heat input is lower than 2.0KJ/mm, Charpy impact toughness in CGHAZ of lower alloy content pipeline steel is good; as heat input increases, impact toughness in CGHAZ of 1# steel is on the rise, and it is high (between 260J and 300J) when heat input is between 2.0KJ/mm and 2.5KJ/mm and the scatter of impact energy is small; impact toughness of 2# steel decreases gradually and the impact energy has obvious variability.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In