0

Full Content is available to subscribers

Subscribe/Learn More  >

Implementation of CSA Z662-15 Annex K Option 2 on a 610mm Liquid Pipeline

[+] Author Affiliations
Rory Belanger, Derrick Sarafinchan

SGS Canada Inc., Edmonton, AB, Canada

Paper No. IPC2016-64564, pp. V003T05A052; 7 pages
doi:10.1115/IPC2016-64564
From:
  • 2016 11th International Pipeline Conference
  • Volume 3: Operations, Monitoring and Maintenance; Materials and Joining
  • Calgary, Alberta, Canada, September 26–30, 2016
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5027-5
  • Copyright © 2016 by ASME

abstract

For more than two decades, CSA Z662 Annex K has provided a method for developing alternative acceptance criteria for weld flaws in mechanized welded pipelines. Increasingly, over the years, fracture mechanics practitioners have found the method overly conservative and restrictive with respect to brittle fracture criteria when compared to other accepted fracture mechanics-based engineering critical assessment ECA codes and methods. These limitations rendered the CSA Annex K method difficult to implement on pipelines constructed with materials not possessing optimal toughness and in cases requiring consideration of fracture toughness at temperatures lower than the typical minimum design metal temperature (MDMT) of −5°C. This paper presents experiences implementing CSA Z662-15 Annex K Option 2 methodology on a 610 mm diameter liquids pipeline and compares and contrasts the utility and benefits of the code revision. This pipeline required consideration for installation during winter months, necessitating installation temperatures as low as −30°C. In addition to evaluation of actual ECA results, analytical evaluations of the Option 2 methodology were also conducted considering parameters outside those used on the project.

The new Annex K Option 2 method was found to be of considerable benefit in preparation of a practical ECA. Since fracture toughness testing was conducted at the anticipated lowest installation temperature, the flaw criteria were, as expected, principally controlled by elastic/plastic crack growth consideration. The failure assessment diagram implemented into the CSA Z662-15 Annex K Option 2 provided tolerance for both longer and deeper flaws than that afforded by Option 1 (which resorts to the former 2011 Annex K method). Furthermore, the reduced restriction to the surface interaction ligament (p distance) offers additional advantages including increased flexibility in weld profile design and weld pass sequencing.

Fracture toughness (CTOD) testing of TMP pipeline steels used in the project at −30°C often produced transitional fracture toughness results. It was found that the particular project materials were quite sensitive to the level of test specimen pre-compression (an acceptable plastic straining method to reduce residual stress gradients) applied to the CTOD specimens to enhance fatigue crack-front straightness. It was found that optimizing the level of pre-compression (to achieve acceptable pre-crack straightness while minimizing plastic pre-strain) achieved a balance between fully satisfying testing requirements, providing a conservative assessment of CTOD, and facilitating a functional Annex K ECA.

Copyright © 2016 by ASME
Topics: Pipelines

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In