0

Full Content is available to subscribers

Subscribe/Learn More  >

Double Jointing Technology for Strain-Based Design (SBD) Pipelines

[+] Author Affiliations
Neerav Verma, Doug P. Fairchild, Andrew J. Wasson, Timothy D. Anderson

ExxonMobil Upstream Research Company, Spring, TX

Fredrick F. Noecker, II

ExxonMobil Production Company, Calgary, AB, Canada

Paper No. IPC2016-64427, pp. V003T05A049; 9 pages
doi:10.1115/IPC2016-64427
From:
  • 2016 11th International Pipeline Conference
  • Volume 3: Operations, Monitoring and Maintenance; Materials and Joining
  • Calgary, Alberta, Canada, September 26–30, 2016
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5027-5
  • Copyright © 2016 by ASME

abstract

Pipelines may experience significant longitudinal strains when subjected to large ground motions, such as seismic activity, landslides, etc. For these conditions, a strain-based design (SBD) approach can be used. The use of higher strength steels (like X80) for SBD approach can enable significant construction cost savings. Costs can be further reduced through the use of a double jointing process in order to reduce the amount of field welding. However, it is challenging to achieve adequate girth weld properties for SBD scenarios involving higher strength steels by using conventional double jointing processes such as submerged arc welding (SAW).

Acicular ferrite interspersed in martensite (AFIM) has been previously identified as an advantageous high strength weld metal microstructure that can be applied in field pipeline construction. In this paper, a double jointing technology for X70+ SBD applications will be discussed. Excellent strength and toughness properties were achieved in double joint welds by using an optimized AFIM welding technology that included a tailored welding consumable wire and a high productivity GMAW-P weld process. Welding procedures are discussed along with mechanical properties achieved. Productivity comparisons suggest that a fully optimized GMAW-P welding process in the 1G-rolled welding position can have productivity comparable to a conventional SAW double jointing process.

Copyright © 2016 by ASME
Topics: Design , Pipelines

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In