0

Full Content is available to subscribers

Subscribe/Learn More  >

Microstructure and Mechanical Properties of Girth Weld HAZ in X80 Line Pipe With High Deformability for Strain Based Design Applications

[+] Author Affiliations
Yu Liu, Yezheng Li, Shuo Li, Zongbin You, Zhanghua Yin

China Petroleum Pipeline Research Institute, Langfang, China

Paper No. IPC2016-64321, pp. V003T05A044; 10 pages
doi:10.1115/IPC2016-64321
From:
  • 2016 11th International Pipeline Conference
  • Volume 3: Operations, Monitoring and Maintenance; Materials and Joining
  • Calgary, Alberta, Canada, September 26–30, 2016
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5027-5
  • Copyright © 2016 by ASME

abstract

X80 line pipe with high longitudinal deformability (X80HD) has been developed and applied in the Strain Based Design (SBD) of pipelines in harsh environment such as seismic areas, permafrost areas, fault zones, etc. For SBD pipelines it is critical that the pipeline girth welds overmatch the tensile properties of the pipe material to avoid local strain accumulation in the girth weld during a strain event. Also, it is important that pipeline girth welds that may experience high strains in operation have sufficient toughness to ensure adequate resistance to failure by fracture.

The objective of this research was to gain a better understanding of the influence of chemical composition and essential welding variables on microstructure and properties of the HAZ regions formed in X80HD pipeline girth welds. In this study, by using the weld thermal simulation approach, the peak temperatures (Tp, representative of the distance to the fusion boundary) and the cooling times, particularly between 800 °C and 500 °C (t8/5, representative of the weld heat input), identical to those occurring in the girth weld HAZ of three different X80HD pipe steels, were artificially reproduced. It should be noted that t8/5 is influenced by both heat input and preheat temperature. The weld peak temperatures, Tp, from 500 °C to 1300 °C, in 100 °C increment, whereas the cooling times t8/5 from 5 to 30 seconds were in 5, 15, and 30 seconds, associated with the heat input range of self-shielded flux cored arc welding (FCAW-S). The thermal simulation specimens on tensile properties, Charpy impact toughness, and Vickers hardness were tested and analyzed. Microstructures of these simulated HAZ were characterized by optical microscopy (OM) and scanning electron microscopy (SEM). Finally, the actual FCAW-S girth welding experiments were carried out. These girth welds were subjected to different testing for evaluation of microstructure and mechanical properties of X80HD girth welded joints. These included transverse weld tensile testing, microhardness map of the weld joint, Charpy V-notch impact testing of weld metal and HAZ, and microstructure analysis. The results demonstrated that softening occurs in the fine grained HAZ (FGHAZ) and the inter-critical HAZ (ICHAZ) of X80HD line pipe girth welds. The severity of HAZ softening depends on the steel chemistry and the heat input applied during girth welding. The metallurgical design of the X80HD pipeline steel and the optimization of the girth welding procedures were proposed.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In