0

Full Content is available to subscribers

Subscribe/Learn More  >

Region-Specified Ratcheting Behavior of API X80 Welded Joint Under Uniaxial Cyclic Loading

[+] Author Affiliations
Hongsheng Lu, Gang Chen, Xu Chen

Tianjin University, Tianjin, China

Yonghe Yang

PetroChina West Pipeline Company, Wulumuqi, China

Xin Wang

Carleton University, Ottawa, ON, Canada

Paper No. IPC2016-64152, pp. V003T05A039; 6 pages
doi:10.1115/IPC2016-64152
From:
  • 2016 11th International Pipeline Conference
  • Volume 3: Operations, Monitoring and Maintenance; Materials and Joining
  • Calgary, Alberta, Canada, September 26–30, 2016
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5027-5
  • Copyright © 2016 by ASME

abstract

Evaluation of mechanical performance of different regions can be difficult by using standard size samples due to the size limitation of weld metal and heat-affected zone (HAZ). At first, the microstructure of different regions was characterized and quantified by Scanning Electron Microscope, which indicate that the pipeline steel is a typical acicular ferrite steel. In this study the deformation behavior of different regions (base metal, weld metal and heat affected zone) in a welded joint of API X80 pipeline steel were studied by conducting uniaxial loading tests on miniature specimens with the cross section of 2×0.5mm and gauge length of 9mm. From the results of uniaxial tension in base metal and weld metal it is shown that the welding is overmatching. Compared to the base metal, the coarse grained HAZ exhibits a lower strength, while the fine grained HAZ exhibits a higher strength. Under near zero-to-tension cyclic stress loading, all regions of the welded joints exhibit progressive accumulation of plastic strain. Under the same stress level, the base metal shows the fastest ratcheting strain accumulation, which is the result of lower strength than other regions. This fact may indicate that the ratcheting behavior of the overall welded joint is highly dependence on that of base metal for the present case. But when under the same normalized stress level (σ = σ/σYS), the fine grained HAZ has the highest ratcheting strain accumulation, while the coarse grained HAZ has the lowest ratcheting strain accumulation, which reveals that the intrinsic resistance to ratcheting is yield strength dependent.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In