Full Content is available to subscribers

Subscribe/Learn More  >

Development of Grade X80 High Charpy Energy Linepipe by MA Formation Control

[+] Author Affiliations
Hideyuki Kimura, Tomoyuki Yokota, Shinichi Kakihara

JFE Steel Corporation, Fukuyama, Japan

Nobuyuki Ishikawa

JFE Steel Corporation, Keihin, Japan

Joe Kondo

JFE Steel Corporation, Tokyo, Japan

Paper No. IPC2016-64179, pp. V003T05A024; 6 pages
  • 2016 11th International Pipeline Conference
  • Volume 3: Operations, Monitoring and Maintenance; Materials and Joining
  • Calgary, Alberta, Canada, September 26–30, 2016
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5027-5
  • Copyright © 2016 by ASME


Higher grade linepipes such as grade X80 have been developed and applied to long distance pipelines in order to reduce the cost of pipeline construction by using thinner pipes than is possible with conventional grades. Service pressures have also been increased in recent years for efficient gas transportation. In addition to the requirement of higher strength, running ductile fracture should be prevented in long distance and high pressure pipelines. Resistance to ductile fracture, as evaluated by Charpy energy, is an important material property for higher grade linepipes.

It has been reported that bainite single-phase steel tends to show higher Charpy energy than ferrite-bainite or bainite-MA (martensite-austenite constituent) dual-phase steels, since void nucleation is suppressed in single-phase steels compared with dual-phase steels. However, in higher grade steels with a bainite single phase, a small amount of MA grains generally remains due to the chemical stability of MA. Therefore, further reduction of MA is key to improving Charpy energy for higher grade linepipe steels. In order to achieve high Charpy energy by MA formation control, the optimum conditions of the plate manufacturing process were investigated. As a result, a high Charpy energy was achieved by the combination of controlled rolling and precise control of the accelerated cooling conditions, by which the MA phase was minimized.

Based on the above investigation, grade X80 high Charpy energy linepipes were trial-produced by applying JFE Steel’s optimized accelerated cooling (ACC) system with a high cooling rate and homogeneous temperature profile. Stable higher Charpy energy was achieved by minimizing MA formation and achieving a homogeneous microstructure by advanced cooling control.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In