Full Content is available to subscribers

Subscribe/Learn More  >

Fracture Behavior in West Jefferson Test Under Low-Temperature Condition for X65 Steel Pipe With High Charpy Energy: Current Activities in HLP Committee, Japan, Report 1

[+] Author Affiliations
Toshihiko Amano, Takehiro Inoue

Nippon Steel & Sumitomo Metal Corporation (NSSMC), Hyogo, Japan

Satoshi Igi, Takahiro Sakimoto

JFE Steel Corporation, Chiba, Japan

Shuji Aihara

University of Tokyo, Tokyo, Japan

Paper No. IPC2016-64308, pp. V003T05A008; 10 pages
  • 2016 11th International Pipeline Conference
  • Volume 3: Operations, Monitoring and Maintenance; Materials and Joining
  • Calgary, Alberta, Canada, September 26–30, 2016
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5027-5
  • Copyright © 2016 by ASME


This paper describes the results of pressure vessel fracture test which called West Jefferson and/or partial gas burst testing using Grade API X65 linepipe steel with high Charpy energy that exhibits inverse facture in the Drop Weight Tear Test (DWTT).

A series of pressure vessel fracture tests which is as part of an ongoing effort by the High-strength Line Pipe committee (HLP) of the Iron and Steel Institute of Japan (ISIJ) was carried out at low temperature in order to investigate brittle-to-ductile transition behavior and to compare to DWTT fracture behavior. Two different materials on Fracture Appearance Transition Temperature (FATT) property were used in these tests. One is −60 degree C and the other is −25 to −30 degree C which is defined as 85 % shear area fraction (SA) in the standard pressed notch DWTT (PN-DWTT). The dimensions of the test pipes were 24inches (609.6 mm) in outside diameter (OD), 19.1 mm in wall thickness (WT). In each test, the test pipe is cooled by using liquid nitrogen in the cooling baths. Two cooling baths are set up separately on the two sides of the test vessel, making it possible to obtain fracture behaviors under two different test temperatures in one burst test. The test vessel was also instrumented with pressure transducers, thermocouples and timing wires to obtain the pressure at the fracture onset, temperature and crack propagation velocity, respectively.

Some informative observations to discuss appropriate evaluation method for material resistance to brittle facture propagation for high toughness linepipe materials are obtained in the test. When the pipe burst test temperatures are higher than the PN-DWTT transition temperature, ductile cracks were initiated from the initial notch and propagated with short distance in ductile manner. When the pipe burst test temperatures were lower than the PN-DWTT transition temperature, brittle cracks were initiated from the initial notch and propagated through cooling bath. However, the initiated ductile crack at lower than the transition temperature was not changed to brittle manner. This means inverse facture occurred in the PN-DWTT is a particular problem caused by the API DWTT testing method. Furthermore, results for the pipes tested indicated that inverse facture occurred in PN-DWTT at the temperature above the 85 % FATT may not affect the arrestability against the brittle fracture propagation and it is closely related with the location of brittle fracture initiation origin in the fracture appearance of PN-DWTT.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In