0

Full Content is available to subscribers

Subscribe/Learn More  >

The Specifications Dilemma Posed by Ultra High Toughness Line Pipe Steels

[+] Author Affiliations
B. N. Leis

B N Leis Consultant, Inc., Worthington, OH

J. M. Gray

Microalloyed Steel Institute Inc., Houston, TX

F. J. Barbaro

Barbaro & Associates, Pty Ltd, Wollongong, Australia

Paper No. IPC2016-64017, pp. V003T05A002; 11 pages
doi:10.1115/IPC2016-64017
From:
  • 2016 11th International Pipeline Conference
  • Volume 3: Operations, Monitoring and Maintenance; Materials and Joining
  • Calgary, Alberta, Canada, September 26–30, 2016
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5027-5
  • Copyright © 2016 by ASME

abstract

Pipelines transporting compressible hydrocarbons like methane or high-vapor-pressure liquids under supercritical conditions are uniquely susceptible to long-propagating failures in the event that initiation triggers this process. The unplanned release of hydrocarbons from such pipelines poses the risk for significant pollution and/or the horrific potential of explosion and a very large fire, depending on the transported product. Accordingly, the manufacturing procedure specification (MPS) developed to ensure the design requirements are met by the steel and pipe-making process is a critical element of the fracture control plan, whose broad purpose is to protect the environment and ensure public safety, and preserve the operator’s investment in the asset.

This paper considers steel specification to avoid long-propagating shear failures in advanced-design larger-diameter higher-pressure pipelines made of thinner-wall higher-grade steels. Assuming that the arrest requirements can be reliably predicted it remains to specify the steel design, and ensure fracture control can be affected through the MPS and manufacturing procedure qualification testing (MPQT). While standards exist for use in MPQTs to establish that the MPS requirements have been met, very often CVN specimens remain unbroken, while DWTT specimens exhibit features that are inconsistent with the historic response and assumptions that underlie many standards. In addition, sub-width specimens are often used, whereas there is no standardized means to scale those results consistent with the full-width response required by some standards. Finally, empirical models such as the Battelle two curve model (BTCM) widely used to predict required arrest resistance have their roots in sub-width specimens, yet their outcome is widely expressed in a full-size context.

This paper reviews results for sub-width specimens developed for steels in the era that the BTCM was calibrated to establish scaling rules to facilitate prediction in a full-size setting. Thereafter, issues associated with the use of sub-width specimens are reviewed and criteria are developed to scale results from such testing for use in the MPS, and MPQT, which is presented as a function of toughness. Finally, issues associated with the acceptance of data from unbroken CVN specimens are reviewed, as are known issues in the interpretation of DWTT fracture surfaces.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In