Full Content is available to subscribers

Subscribe/Learn More  >

Reinforcing Large Diameter Elbows Using Composite Materials Subjected to Extreme Bending and Internal Pressure Loading

[+] Author Affiliations
Chris Alexander, Brent Vyvial, Ashwin Iyer

Stress Engineering Services, Inc., Houston, TX

Richard Kania, Joe Zhou

TransCanada Pipelines Limited, Calgary, AB, Canada

Paper No. IPC2016-64311, pp. V003T04A037; 16 pages
  • 2016 11th International Pipeline Conference
  • Volume 3: Operations, Monitoring and Maintenance; Materials and Joining
  • Calgary, Alberta, Canada, September 26–30, 2016
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5027-5
  • Copyright © 2016 by ASME


A study was conducted to evaluate the use of E-glass/epoxy composite materials for reinforcement of large-diameter elbows. Using a combination of sub-scale and full-scale testing, the study demonstrated that when properly designed and installed, composite materials can be used to reduce strain in reinforced elbows considering bending loads of up to 3.6 million ft-lbs (4.88 million N-m), cyclic pressures between 720 psi (4.96 MPa) and 1,440 psi (9.93 MPa), and burst testing. The stresses measured in the composite material were well below designated ASME PCC-2 design stresses for the composite materials. During testing, there was no evidence that previously applied bending loads reduced the overall burst pressure capacity of the composite-reinforced elbows. Finite element modeling was used to optimize the geometry of the composite reinforcement. The resulting design guidance from this study was used to provide direction for possible reinforcement of large-diameter elbows for in-service pipelines.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In