0

Full Content is available to subscribers

Subscribe/Learn More  >

Robust Direct Hydrocarbon Sensor Based on Novel Carbon Nanotube Nanocomposites for Leakage Detection

[+] Author Affiliations
Kaushik Parmar, Chaneel Park, Simon Park

University of Calgary, Calgary, AB, Canada

Paper No. IPC2016-64118, pp. V003T04A003; 5 pages
doi:10.1115/IPC2016-64118
From:
  • 2016 11th International Pipeline Conference
  • Volume 3: Operations, Monitoring and Maintenance; Materials and Joining
  • Calgary, Alberta, Canada, September 26–30, 2016
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5027-5
  • Copyright © 2016 by ASME

abstract

Leakage in oil and gas infrastructure, often cause significant financial losses, severe damage to the environment and raises public concern. In order to minimize the impact of spills, quick detection of a leak and a rapid response are needed. The systems currently employed to detect pipeline leakage range from simple visual checking to complex hardware and software systems such as mass balance, pressure point analysis, flow deviation, acoustic emission systems, and fibre-optic-based sensing technologies. These methods are useful, but there are certain limitations. The main drawback of the majority of these leak detection technologies is that they detect leakage indirectly, often unable to detect the leakage until the major spill.

The preventive monitoring system and direct detection of hydrocarbon leakage are urgently needed to enable fast response and timely repairs with less deleterious effects. Research is being conducted for the development of a functional prototype and environmental testing of in-situ carbon nanotube (CNT) nanocomposite based sensors for hydrocarbon leakage detection. The CNT nanocomposite offers a unique approach to the direct hydrocarbon leakage detection in pipelines and aboveground storage tanks (ASTs).

Expanding the study from the previous report of sensor characteristics under the optimal ambient condition, it was further investigated to identify the sensor performance under harsh conditions such as the underground (exposed to the soil) with compost and moisture, high pressure, changing temperature and long-term exposure to the outdoor environment. Investigation of the sensor behavior is studied, and a performance matrix is developed that accounts for the change in sensor response to various environmental conditions. Results showed that the proposed CNT nanocomposite sensor was applicable under given conditions with immediate responses while maintaining high sensitivity to the hydrocarbon leakage.

Once a list of sensor detection specifications is defined, it is anticipated that the CNT sensor technology is applicable as part of a robust, reliable and accurate early detection system for the pipeline industry.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In