Full Content is available to subscribers

Subscribe/Learn More  >

Application of Error-in-Variable Model (EVM) for Estimating Gas Pipeline Internal Wall Roughness Before and After Pigging

[+] Author Affiliations
Teresa Leung, Joel Smith

NOVA Chemicals, Calgary, AB, Canada

Trevor Glen, Will Runciman

TransCanada Pipelines Ltd., Calgary, AB, Canada

Paper No. IPC2016-64080, pp. V003T04A002; 13 pages
  • 2016 11th International Pipeline Conference
  • Volume 3: Operations, Monitoring and Maintenance; Materials and Joining
  • Calgary, Alberta, Canada, September 26–30, 2016
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-5027-5
  • Copyright © 2016 by ASME


Gas pipeline internal surface typically undergoes degradation for a variety of reasons such as fouling of the pipe inner surface, erosion, corrosion and deposits of objectionable materials that occasionally enter the gas stream at receipt points. Accurate monitoring of the pipe internal surface condition can hugely benefit the planning of cleaning activities. Theoretically the pipe wall roughness for a given pipe segment can be extracted based on measured flow data and other system parameters. The challenge lies in the fact that measured data all contain varying degrees of uncertainty, and the system becomes more complex to analyze when it contains different segments connected in series or parallel like many typical gas gathering and lateral networks. This paper demonstrates the application of the Error-in-Variable Model (EVM) using the Markov Chain Monte Carlo (MCMC) solution method in analyzing a complex pipeline network on the TransCanada NGTL System. EVM, a well-established Bayesian parameter estimation technique, accounts for uncertainties in the measured variables, such as flow and pressure data, when determining the most probable estimates of unknown parameters such as pipe internal wall surface roughness. In this work, the EVM problem is solved using the MCMC Metropolis-Hastings algorithm. The MCMC approach is demonstrated to be robust, easy to implement and capable of handling large quantities of data. It has the potential to analyze complex networks and monitor the pipe wall surface condition on-line with SCADA data. Using this method, the internal wall surface roughness for the segments of interest in this network were extracted from measured data collected before and after the pigging operation. Results demonstrate the model’s capability in estimating the degradation of the pipe wall internal surface and the effectiveness of pigging. Details on implementation and challenges in applying such methodology to analyze complex gas networks are discussed.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In